
ip addr show

sudo nano /etc/netplan/00-installer-config.yaml

network:
renderer: networkd
ethernets:

enp0s3:
addresses:

- 192.248.X.Y/23
nameservers:

addresses: [192.248.1.161,1.1.1.1]
routes:

- to: default
via: 192.248.111.254

version: 2

sudo netplan apply

ip addr show
ping 192.248.1.161

sudo hostnamectl set-hostname master

sudo nano /etc/hosts

127.0.0.1
127.0.1.1

localhost
master

Lab VMs Setup

Now your VM should have an IP address assigned through DHCP. To view the IP address and

network adapter details enter the following command.

But we need to assign the correct IP address manually which is given in this table. To

configure the IP address need to edit the configuration file in /etc/netplan directory. In this

case file will be 00-installer-config.yaml.

edit the file as below. Please be careful about correct indentation and to avoid tab characters and

following spaces. Only use spacebar to get spaces from left. Here each line start have

indentations of 2,4,6,8,.. etc from the left.

Save the configuration file. Enter below to apply the changes.

check the IP address change and connectivity.

Once the network configuration is complete you may go ahead with renaming the hostname.

Please add a meaningful name the VM. Since here we have 3 VMs for Kubernetes master and

2 worker nodes, you may have similar names like master, worker1, worker2 for each VMs.

Since we are going to use the current VM as the master node in the next hands-on session

you may name it as master or with a similar name.For this enter below commands.

Next change the hostname entry in the /etc/hosts file.

https://ws.learn.ac.lk/wiki/containerization2023Agenda/IPAllocation

sudo nano /etc/apt/sources.list

#deb [check-date=no] file:///cdrom jammy main restricted

This ubuntu installation by default may include cdrom repository to the apt sources.list. We

need remove it because no cdrom is attached.

Comment out the following line

Now the Ubuntu VM is ready and you can go ahead with Docker installation.

sudo apt update

sudo apt upgrade

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ${USER}

sudo systemctl enable docker

sudo systemctl start docker

docker --version

docker pull httpd

docker run -d -p 8080:80 --name sample-webapp httpd

sudo apt-get install lynx

lynx http://localhost:8080

Part 1:

Installing Docker on Ubuntu Server

1. Update Your System: Ensure your system package database is up-to-date.

2. Install Docker: Install Docker using the convenience script provided by Docker.

3. Add User to Docker Group: to run Docker commands without sudo, add your user to

the docker group.

Log out and log back in for the group changes to take effect.

4. Start and Enable Docker: Ensure Docker starts on boot.

5. Verify Docker Installation: Check the Docker version to ensure it's installed correctly.

6. Deploying a Sample Web Application using Docker

6.1 Pull a Sample Web Application Image: For this guide, we'll use a simple HTTP server image

from Docker Hub.

6.2 Run the Web Application: Start a container using the httpd image. This will run the web

server on port 8080.

6.3 Access the Web Application: If you're accessing the server locally, open a web browser and

navigate to: (Since you are connected via SSH lets install a text-based web browser lynx.)

6.4 Stop and Remove the Web Application (Optional): When you're done testing the web

application, you can stop and remove the container.

http://localhost:8080/

docker rm sample-webapp

docker --version

docker info

docker pull <image_name>

docker build -t <image_name>:<tag> <path>

docker images

docker run <options> <image_name>

docker ps

docker ps -a

docker stop <container_id/container_name>

docker rm <container_id/container_name>

Extra Ref:

https://linuxhint.com/best_linux_text_based_browsers/

https://romanzolotarev.com/ssh.html

Basic Docker Commands and Their Usage

Usage: Displays the Docker version installed. Example:

Usage: Provides detailed information about the Docker installation. Example:

Usage: Downloads a Docker image from Docker Hub. Example:

Usage: Builds a Docker image from a Dockerfile located at <path>. Example:

docker build -t myapp:latest .

Usage: Lists all available Docker images on the system. Example:

Usage: Creates and starts a container from a Docker image. Example:

Usage: Lists running containers. Example:

Usage: Lists all containers, including stopped ones. Example:

Usage: Stops a running container. Example:

docker stop sample-webapp

docker info

nginx

images

-d -p 80:80 nginx

docker --version

docker pull

docker

docker run

docker ps

docker ps -a

docker stop my_container

https://linuxhint.com/best_linux_text_based_browsers/
https://romanzolotarev.com/ssh.html

docker port

ls

docker stats

docker rmi <image_name>

docker logs <container_id/container_name>

Usage: Removes a stopped container. Example:

Usage: Removes a Docker image. Example:

Usage: Displays logs from a running or stopped container. Example:

Troubleshooting Common Docker Container Issues

Container Fails to Start

Check Logs: Use

messages.

to check for any error

Inspect Configuration: Ensure that the Docker run command has the

correct parameters, such as port mappings and volume mounts.

Networking Issues

Check IP Address: Use

to find the container's IP address.

Check Port Bindings: Ensure that the ports inside the container are correctly

mapped to the host using the -p option. You may use

to further check the port mapping.

File or Directory Not Found in Container

Check Volumes: Ensure that directories or files from the host are correctly

mounted into the container using the -v option. You may use docker volume

to list all volumes mapped and docker volume inspect <volume_name>

to inspect a selected volume. Inspect Image: Use docker image inspect

to see the image's layers and ensure the required files are present.

Container Performance Issues

Check Resources: Containers might face performance issues if they're not

allocated enough resources. Use to check the resource usage of

running containers. Limit Resources: When running a container, you can use flags

like --cpus and --memory to limit its resources. You can use

<container_name> to see some stats.

Image-Related Issues

Pull Latest Image: Ensure you have the latest version of the image using

. Check Dockerfile: If you're building your own image, ensure

that the Dockerfile has the correct instructions.

my_container

docker rm my_container

docker rmi nginx

docker logs

docker logs <container_name>

docker inspect <container_name> | grep

IPAddress

<container_name>

<image_name>

docker top

docker

pull <image_name>

--user

Permission Issues

User Mappings: If a containerized application can't access certain files, it might be

a user permission issue. Ensure that the user inside the container has the

necessary permissions. Use Flag: When running a container, you can

specify which user the container should run as using the --user flag.

Part 2:

What is a Dockerfile?

A Dockerfile is a script containing a set of instructions used by Docker to automate the

process of building a new container image. It defines the environment inside the container,

installs necessary software, sets up commands, and more.

Basic Structure of a Dockerfile

A Dockerfile consists of a series of instructions and arguments. Each instruction is an

operation used to build the image, like installing a software package or copying files. The

instruction is written in uppercase, followed by its arguments.

Key Dockerfile Instructions

: Specifies the base image to start from. It's usually an OS or another

application.

Example:

: Adds metadata to the image, like maintainer information.

Example:

: Executes commands in a new layer on top of the current image and

commits the result.

Example:

: Provides defaults for the executing container. There can only be one CMD

instruction in a Dockerfile.

Example:

: Configures the container to run as an executable. It's often used in

combination with CMD.

Example:

: Copies files or directories from the host machine to the container.

Example:

FROM

FROM ubuntu:20.04

LABEL

LABEL maintainer="name@example.com"

RUN

RUN apt-get update && apt-get install -y nginx

CMD

CMD ["nginx", "-g", "daemon off;"]

ENTRYPOINT

ENTRYPOINT ["nginx"]

COPY

COPY ./webapp /var/www/webapp

mailto:name@example.com

RUN CMD

my-webserver

my-webserver:latest

Use the official Nginx image as a base
FROM nginx:latest

Set the maintainer label
LABEL maintainer="name@example.com"

Copy static website files to the Nginx web directory
COPY ./website /usr/share/nginx/html

Expose port 80 for the web server
EXPOSE 80

Default command to run Nginx in the foreground
CMD ["nginx", "-g", "daemon off;"]

docker build -t my-webserver:latest .

: Similar to COPY, but can also handle URLs and tarball extraction.

Example:

WORKDIR : Sets the working directory for any subsequent , ,

ENTRYPOINT ,

Example:

, and instructions.

: Informs Docker that the container listens on the specified network port

at runtime.

Example:

: Sets environment variables.

Example:

: Creates a mount point for external storage or other containers.

Example:

Let's create a Dockerfile for a basic web server using Nginx:

First, create a folder called and go inside it

Then create another folder inside that called website and a file called index.html within the

folder website with any content of your choice. Create a file named dockerfile with the

following content within the my-webserver folder. (ie. my-webserver/website/index.html and

my-webserver/dockerfile)

Building an Image from a Dockerfile

To build a Docker image from your Dockerfile, navigate to the directory containing the

Dockerfile and run:

This command tells Docker to build an image using the Dockerfile in the current directory (.)

and tag it as .

ADD

ADD https://example.com/app.tar.gz /app/

COPY ADD

WORKDIR /app

EXPOSE

EXPOSE 80

ENV

ENV MY_VARIABLE=value

VOLUME

VOLUME /data

cd my-webserver

mailto:name@example.com

version: '3'

services:

Database Service
db:

image: mysql:5.7
volumes:

- db_data:/var/lib/mysql
environment:

MYSQL_ROOT_PASSWORD: somewordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

Best Practices

 Minimize Layers: Try to reduce the number of layers in your image to make it

lightweight. For instance, chain commands using && in a single RUN instruction.

 Use .dockerignore: Just like .gitignore, you can use .dockerignore to exclude files that

aren't needed in the container.

 Avoid Installing Unnecessary Packages: Only install the packages that are necessary to

run your application.

 Clean Up: Remove temporary files and caches to reduce image size.

Part 3:

What is Docker Compose?

Docker Compose is a tool for defining and running multi-container Docker applications. With

Compose, you can define a multi-container application in a single file, then spin up your

application with a single command (docker compose up).

Key Concepts

Services: Each container started by Docker Compose is a service. Services are

defined in the compose.yaml file. Networks: By default, Docker Compose sets up a

single network for your application. Each container for a service joins the default

network and is discoverable via a hostname identical to the container name.

Volumes: Volumes can be used to share files between the host and container or

between containers.

Basic docker compose Commands

 docker compose up : Starts up the services defined in the compose.yaml file.

 docker compose down : Stops and removes all the containers defined in the

compose.yaml file.

Lists the services and their current state (running/stopped).

: Shows the logs from the services.

Deploying WordPress with Docker Compose

Let's deploy a WordPress application using two containers: one for WordPress and another for

the MySQL database. Create a compose.yaml file:

docker compose ps :

docker compose logs

compose.yaml

http://<MASTER_IP>:8080

compose down

docker compose up -d

Start the WordPress and Database Containers:Navigate to the directory containing the

file and run:

This command will start the services in detached mode. Once the services are up, you can

access the WordPress site by navigating to from your browser.

Stopping the Services: To stop the services, navigate to the same directory and run:

Best Practices

 Explicit Service Names: Give your services explicit names to make it clear what each

service does.

 Environment Variables: Use environment variables for sensitive information and

configurations.

 Service Dependencies: Use the depends_on option to ensure services start in the correct

order.

Part 4:

Deploy any web app as per your wish and showcase its usage of it. You need to use more

than one docker container

eg: you can use three containers, one to run a web app and the others to run a database and

other data storage respectively. You may use the docker hub to get any existing containers.

What we evaluate is your ability to deploy the containers and bringing up a working web app.

WordPress Service
wordpress:

depends_on:
db

image: wordpress:latest
ports:

- "8080:80"
environment:

WORDPRESS_DB_HOST: db:3306
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress
WORDPRESS_DB_NAME: wordpress

volumes:
wordpress_data:/var/www/html

volumes:

db_data: {}
wordpress_data: {}

docker

