
Part 1:

Installing Docker on Ubuntu Server

1. Update Your System: Ensure your system package database is up-to-date.

$ sudo apt update
$ sudo apt upgrade

2. Install Docker: Install Docker using the convenience script provided by Docker.

$ curl -fsSL https://get.docker.com -o get-docker.sh
$ sudo sh get-docker.sh

3. Add User to Docker Group (Optional): If you want to run Docker commands without sudo,
add your user to the docker group.

$ sudo usermod -aG docker ${USER}

Log out and log back in for the group changes to take effect.

4. Start and Enable Docker: Ensure Docker starts on boot.

$ sudo systemctl enable docker
$ sudo systemctl start docker

5. Verify Docker Installation: Check the Docker version to ensure it's installed correctly.

$ docker --version

6. Deploying a Sample Web Application using Docker

6.1 Pull a Sample Web Application Image: For this guide, we'll use a simple HTTP server
image from Docker Hub.

$ docker pull httpd

6.2 Run the Web Application: Start a container using the httpd image. This will run the web
server on port 8080.

$ docker run -d -p 8080:80 --name sample-webapp httpd

6.3 Access the Web Application: If you're accessing the server locally, open a web browser
and navigate to: (Since you are connected via SSH lets install a text-based web browser
lynx.)

$ sudo apt-get install lynx
$ lynx http://localhost:8080

6.4 Stop and Remove the Web Application (Optional):
When you're done testing the web application, you can stop and remove the container.

$ docker stop sample-webapp
$ docker rm sample-webapp

Extra Ref:
https://linuxhint.com/best_linux_text_based_browsers/
https://romanzolotarev.com/ssh.html

Basic Docker Commands and Their Usage

• docker --version
 Usage: Displays the Docker version installed.
 Example: docker --version

• docker info
 Usage: Provides detailed information about the Docker installation.
 Example: docker info

• docker pull <image_name>
 Usage: Downloads a Docker image from Docker Hub.
 Example: docker pull nginx

• docker build -t <image_name>:<tag> <path>
 Usage: Builds a Docker image from a Dockerfile located at <path>.
 Example: docker build -t myapp:latest .

• docker images
 Usage: Lists all available Docker images on the system.
 Example: docker images

• docker run <options> <image_name>
 Usage: Creates and starts a container from a Docker image.
 Example: docker run -d -p 80:80 nginx

• docker ps
 Usage: Lists running containers.
 Example: docker ps

• docker ps -a
 Usage: Lists all containers, including stopped ones.
 Example: docker ps -a

• docker stop <container_id/container_name>
 Usage: Stops a running container.
 Example: docker stop my_container

• docker rm <container_id/container_name>
 Usage: Removes a stopped container.
 Example: docker rm my_container

• docker rmi <image_name>
 Usage: Removes a Docker image.
 Example: docker rmi nginx

• docker logs <container_id/container_name>
 Usage: Displays logs from a running or stopped container.
 Example: docker logs my_container

Troubleshooting Common Docker Container Issues

• Container Fails to Start
 Check Logs: Use docker logs <container_name> to check for any error messages.
 Inspect Configuration: Ensure that the Docker run command has the correct
parameters, such as port mappings and volume mounts.

• Networking Issues
 Check IP Address: Use docker inspect <container_name> | grep IPAddress to find the
container's IP address.
 Check Port Bindings: Ensure that the ports inside the container are correctly
mapped to the host using the -p option.
 You may use docker port <container_name> to further check the port mapping.

• File or Directory Not Found in Container
 Check Volumes: Ensure that directories or files from the host are correctly
mounted into the container using the -v option.
 You may use docker volume ls to list all volumes mapped and docker volume
inspect <volume_name> to inspect a selected volume.
 Inspect Image: Use docker image inspect <image_name> to see the image's layers and
ensure the required files are present.

• Container Performance Issues
 Check Resources: Containers might face performance issues if they're not
allocated enough resources. Use docker stats to check the resource usage of running
containers.
 Limit Resources: When running a container, you can use flags like --cpus and --
memory to limit its resources.
 You can use docker top <container_name> to see some stats.

• Image-Related Issues
 Pull Latest Image: Ensure you have the latest version of the image using docker
pull <image_name>.
 Check Dockerfile: If you're building your own image, ensure that the Dockerfile
has the correct instructions.

• Permission Issues
 User Mappings: If a containerized application can't access certain files, it might
be a user permission issue. Ensure that the user inside the container has the
necessary permissions.
 Use --user Flag: When running a container, you can specify which user the
container should run as using the --user flag.

Part 2:

What is a Dockerfile?

A Dockerfile is a script containing a set of instructions used by Docker to automate the
process of building a new container image. It defines the environment inside the container,
installs necessary software, sets up commands, and more.
Basic Structure of a Dockerfile

A Dockerfile consists of a series of instructions and arguments. Each instruction is an
operation used to build the image, like installing a software package or copying files. The
instruction is written in uppercase, followed by its arguments.
Key Dockerfile Instructions

 FROM: Specifies the base image to start from. It's usually an OS or another application.
 Example: FROM ubuntu:20.04

 LABEL: Adds metadata to the image, like maintainer information.
 Example: LABEL maintainer="name@example.com"

 RUN: Executes commands in a new layer on top of the current image and commits the
result.
 Example: RUN apt-get update && apt-get install -y nginx

 CMD: Provides defaults for the executing container. There can only be one CMD
instruction in a Dockerfile.
 Example: CMD ["nginx", "-g", "daemon off;"]

 ENTRYPOINT: Configures the container to run as an executable. It's often used in
combination with CMD.
 Example: ENTRYPOINT ["nginx"]

 COPY: Copies files or directories from the host machine to the container.
 Example: COPY ./webapp /var/www/webapp

 ADD: Similar to COPY, but can also handle URLs and tarball extraction.
 Example: ADD https://example.com/app.tar.gz /app/

 WORKDIR: Sets the working directory for any subsequent RUN, CMD, ENTRYPOINT, COPY,
and ADD instructions.
 Example: WORKDIR /app

 EXPOSE: Informs Docker that the container listens on the specified network port at
runtime.
 Example: EXPOSE 80

 ENV: Sets environment variables.
 Example: ENV MY_VARIABLE=value

 VOLUME: Creates a mount point for external storage or other containers.
 Example: VOLUME /data

Let's create a Dockerfile for a basic web server using Nginx:

First, create a folder called my-webserver and go inside it cd my-webserver

Then create another folder inside that called website and a file called index.html within the
folder website with any content of your choice.

Create a file dockerfile with the following content within the my-webserver folder.

Use the official Nginx image as a base
FROM nginx:latest

Set the maintainer label
LABEL maintainer="name@example.com"

Copy static website files to the Nginx web directory
COPY ./website /usr/share/nginx/html

Expose port 80 for the web server
EXPOSE 80

Default command to run Nginx in the foreground
CMD ["nginx", "-g", "daemon off;"]

Building an Image from a Dockerfile

To build a Docker image from your Dockerfile, navigate to the directory containing the
Dockerfile and run:

docker build -t my-webserver:latest .

This command tells Docker to build an image using the Dockerfile in the current directory (.)
and tag it as my-webserver:latest.

Best Practices

• Minimize Layers: Try to reduce the number of layers in your image to make it
lightweight. For instance, chain commands using && in a single RUN instruction.

• Use .dockerignore: Just like .gitignore, you can use .dockerignore to exclude files that
aren't needed in the container.

• Avoid Installing Unnecessary Packages: Only install the packages that are necessary
to run your application.

• Clean Up: Remove temporary files and caches to reduce image size.

Part 3:

What is Docker Compose?

Docker Compose is a tool for defining and running multi-container Docker applications. With
Compose, you can define a multi-container application in a single file, then spin up your
application with a single command (docker-compose up).

Key Concepts

 Services: Each container started by Docker Compose is a service. Services are defined in
the docker-compose.yml file.

 Networks: By default, Docker Compose sets up a single network for your application. Each
container for a service joins the default network and is discoverable via a hostname identical
to the container name.

 Volumes: Volumes can be used to share files between the host and container or between
containers.

Basic docker-compose Commands

• docker-compose up: Starts up the services defined in the docker-compose.yml file.
• docker-compose down: Stops and removes all the containers defined in the docker-

compose.yml file.
• docker-compose ps: Lists the services and their current state (running/stopped).
• docker-compose logs: Shows the logs from the services.

Deploying WordPress with Docker Compose

Let's deploy a WordPress application using two containers: one for WordPress and another
for the MySQL database.

Create a docker-compose.yml file:

version: '3'

services:
 # Database Service
 db:
 image: mysql:5.7
 volumes:
 - db_data:/var/lib/mysql
 environment:
 MYSQL_ROOT_PASSWORD: somewordpress
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

 # WordPress Service
 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 ports:
 - "8080:80"
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress
 WORDPRESS_DB_PASSWORD: wordpress
 WORDPRESS_DB_NAME: wordpress
 volumes:
 - wordpress_data:/var/www/html

volumes:
 db_data: {}
 wordpress_data: {}

Start the WordPress and Database Containers: Navigate to the directory containing the
docker-compose.yml file and run:

docker-compose up -d

This command will start the services in detached mode. Once the services are up, you can
access the WordPress site by navigating to http://<Floating_IP>:8080 from your browser.

Stopping the Services: To stop the services, navigate to the same directory and run:

docker-compose down

Best Practices

• Explicit Service Names: Give your services explicit names to make it clear what each
service does.

• Environment Variables: Use environment variables for sensitive information and
configurations.

• Service Dependencies: Use the depends_on option to ensure services start in the
correct order.

Part 4:

Deploy any web app as per your wish and showcase its usage of it. You need to use more
than one docker container eg: you can use three containers, one to run a web app and the
others to run a database and other data storage respectively. You may use the docker hub
to get any existing containers. What we evaluate is your ability to deploy the containers and
bringing up a working web app.

