
Cloud, Virtualization and Containers



Outline

▪ Cloud Infrastructure Recap

▪ Concept of Virtualization

▪ Hypervisors: Underlying Virtualization Technology

▪ Containerization: A New Paradigm

▪ Virtualization vs Containerization: Comparing Approaches

▪ Introduction to Docker: Containerization Made Easy



Cloud Infrastructure Recap
What are the components of cloud infrastructure?

▪ Hardware

▪ Virtualization

▪ Storage

▪ Network



Cloud Infrastructure Recap

▪ Hardware Resources –

▪ Physical Hardware Distribution:

▪ Positioned at Multiple Geographic Locations

▪ Networking Equipment:

▪ Facilitating Data Transmission

▪ Storage Arrays:

▪ Storing Data Securely

▪ Central Element:

▪ Servers Play a Vital Role



Cloud Infrastructure Recap

▪ Network Infrastructure:

▪ Data Centers: Essential facilities hosting hardware resources, Interconnected by high-

speed networks for seamless communication.

▪ Varied network topologies employed within data centers, Distributes data traffic 

across multiple servers for optimization.

▪ Robust security measures, including firewalls, ensure data protection and 

Interconnectivity enhances efficient data flow and component interaction.



Cloud Infrastructure Recap
▪ Storage Solutions:

▪ Storage Types: Distinguishing Block, Object, and File Storage with Their Respective 

Applications

▪ Data Replication: Implementing Strategies to Duplicate Data for EnhancedAvailability 

and Disaster Recovery

▪ Elastic Storage: Adapting Storage Resources to Fluctuating Demands through Scalability



Cloud Infrastructure Recap
▪ Virtualization –

▪ Essential Role: Vital Component in Cloud Infrastructure

▪ Abstraction of Resources: Separating Data Storage and Computing from 

Hardware

▪ Enhanced Interaction: Facilitating Communication Between Users and Cloud 

Infrastructure

▪ Common Practice: Frequently Applied to Data Storage and Computing 

Resources



Concept of Virtualization
▪ Let's explore the depths of virtualization!

▪ Virtualization: An Efficient Process for Managing PCs and Hardware

▪ Utilizes an Abstraction Layer Above Computer Hardware



Cont.

▪ What Constitutes the Hardware Components of a Single Computer?

▪ Processors, memory, storage and more

Partitioned Across Multiple Virtual▪ These Components Are 

Computers, Known As:

▪ Virtual machines (VMs)



Cont.

▪ Virtualization has become the prevailing norm in modern 

enterprise IT architecture.

▪ Cloud resources exhibit cost-effectiveness as workloads 

expand, allowing seamless scalability.



Cont.
▪ Key Benefits:

▪ Substantial reduction in IT expenditures.

▪ Streamlined management processes.

▪ Minimal downtime coupled with heightened resilience.

▪ Expedited provisioning of resources.



Types of Virtualization

▪ Server Virtualization

▪ Desktop Virtualization

▪ Network Virtualization

▪ Storage Virtualization

▪ Application Virtualization



Virtual machines (VMs)

- A virtual envirnoment that 

simulate physical computation 

in software form,

- Server file of VM’s 

configuration



Cont.
▪ Types of VMs

▪ MAC, Windows, Andriod, Linux and iOS

▪ Java, Python

▪ VMware software

▪ Advantadges of VM
▪ Resources utilization

▪ Scalibility

▪ Portability

▪ Flexibility &

▪ Security



Cont.

▪ VM can’t interact with the hardware directly.

▪ So,how does virtualization works?

▪ Hypervisior is refered as the software layer that coordinates VMs.

▪ Serves as an interface.



Hypervisors
▪ Before hypervisors, most of the physical computers used to run on 

one OS at a time.

▪ Downside : Wasted resources, because OS could not use all 

computer’s power.



Cont.

▪ Underlying Virtualization Technology

▪ Known as virtual machine monitor (VMM)

▪ Isolates VMs logically, assigning each VM slices of underlying 

computing power, memory, and storage.



Type 1 Hypervisor:
▪ Type 1 Hypervisor:

▪ Runs directly on top of physical hardware (usally server)

▪ Bare metal

▪ Separate software product to create and manipulate VMs.



Types of Hypervisor
▪ Type 1 Hypervisor:

▪ VM resources are scheduled directly on top of hardware

▪ Which Type 1 hypervisor is associated with the penguin mascot?

▪ Example – KVM

▪ Others – ESXi and Vsphere, XEN



Cont.
▪ Type 2 Hypervisior:

▪ Doesn’t run directly on the underlaying hardware

▪ Hosted as an appliction on host OS

▪ Single-user desktops

▪ Examples – What virtualization software is well-known?

▪ Oracle Virtual Box

▪ VMware Fusion, Workstation



Cont.

▪ Create VMs manually and install guest OS

▪ Must access resources via the host OS

▪ Latency issues, security risks and affect performance



Revisiting the Distinctions

Host OS



VMs vs Bare metal servers
Virtual Machines: Bare Metal Servers:

• Created and managed by a 

hypervisor.

• Operate in isolated environments.

• Share physical server resources.

• Flexible provisioning and scaling.

• Hardware-independent and 

portable.

• Run directly on physical hardware.

• Challenges in isolation.

• Dedicated resources per server.

• Limited flexibility in provisioning.

• Tied to specific hardware.



Security

▪ Security Advantages of Virtualization:

▪ Malware-infected VMs can be rolled back using snapshots.

▪ Isolated environments limit the impact of breaches.

▪ Challenges:

▪ Hypervisor attacks can affect multiple VMs.



Containers represent the next stage beyond virtualization!



Containerization: A New Paradigm
▪ Containers hold undeniable importance in modern computing!

▪ Throughout our exploration, we'll cover topics such as:

▪ The reasons driving the adoption of containers.

▪ How they enhance our processes.

▪ The diverse domains that leverage container technology.



Cont.
▪ Leveraging Containerization at Google:

▪ Addressing issues encountered with VM models.

▪ Streamlined Operating System Usage:

▪ Containers avoid the necessity for a complete OS.

▪ Swift Start-Up and Unparalleled Portability:

▪ Containers boast quick launch times and exceptional mobility.

▪ Effortless Migration Across Environments:

▪ Moving containers between VMs, bare metal, and the cloud is a smooth process.



Containerization
▪ What is Containerization?

▪ Packaging of a software code with just the operating system (OS), 
libs and dependencies

▪ Creating a single lightweight executable – called Container

▪ Resource efficient and portability



Cont.
▪ What is Containerization?

▪ Defacto comute units of modern cloud-native applications

▪ Allows developers to create and deploy application faster 

and securely

▪ Important - Allows applications to be “written once and run anywhere.”



Cont.
▪ What is container?

▪ Often referred as “lightweight”

▪ Standardized packaging for software dependencies

▪ Isolate apps from each other

▪ Works for all major Linux distributions, MacOS, Windows



Application Containerization

▪ Containers bundle an application, along with its configuration files, 

libraries, and dependencies, into a single executable package.

▪ Unlike traditional approaches, containers don't include a copy of the 
operating system.

▪ Runtime engines (e.g., Docker runtime) are used to facilitate 

container sharing of the host OS.



Cont.
▪ Shared Resources and Efficiency:

▪ Common bins and libraries can be shared among multiple 

containers.

▪ Containers are more efficient in terms of capacity and start-up 
time compared to running a full OS with each application.

▪ Smaller footprint and faster start-up lead to higher server 

efficiency.



Cont.
▪ Isolation and Security:

▪ Containers isolate applications, preventing the spread of malicious 
code from one container to another or to the host system.

▪ Portability:

▪ Containerized applications are portable and can run consistently 

across various platforms, clouds, and OS types.

▪ Easily transferable between desktop, VMs, different OSes, and 
cloud environments.



Cont.



Linux Containers (LXC)
▪ Linux and Container Technology:

▪ Linux is an open-source operating system.

▪ It features built-in container technology.

▪ Linux Containers:

▪ Linux containers are self-contained environments.

▪ They enable multiple Linux-based applications on a single host.



LXC

▪ Deployment for Data-Intensive Applications

▪ Efficiently handle writing or reading large amounts of data.

▪ Linux Namespace:

▪ Containers utilize Linux namespaces to allocate functionalities.

▪ Namespaces isolate resources such as networking, process IDs, etc.



Virtualization vs Containerzation!
▪ Containers and virtual machines (VMs) are both used to run 

multiple software types in one environment.

▪ Container technology offers additional benefits beyond 

virtualization, becoming a preferred choice for IT 

professionals.



Cont.
▪ Virtualization Efficiency:

▪ Virtualization runs multiple operating systems and applications on 
a single physical computer.

▪ Each application and its dependencies are packaged as a VM, 

leading to cost savings.



Cont.
▪ Containerization Efficiency:

▪ Containers bundle application code, configuration, and dependencies into 

an executable package.

▪ Unlike VMs, containers don't include a copy of the OS but share the host's 

OS kernel.

▪ Container runtime engine enables sharing the OS among all containers on 

the system.



Hypervisor Type1 vs Type2 vs Container



VMs vs Containers



Introduction to Docker!

▪ Docker is a game-changing platform for modern 

application deployment.

▪ It takes containerization to the next level, making 
app management a breeze.



Docker!

▪ Docker is so popular today that “Docker” and “containers” are used 

interchangeably.



Cont.

▪ dotCloud started Docker as Platform as a service (PaaS).

▪ dotCloud leveraged LXC behind

▪ The word “Docker” comes from a British colloquialism meaning dock 

worker - somebody who loads and unloads ships.



Cont.
▪ Why Docker is so important?

▪ Docker provides what is called an abstraction

▪ Abstraction – Allows work with complicated things in simplified 

terms.

▪ Software community adaption of container and Docker

▪ Amazon, Microsoft, and Google

▪ Cross platform & open way



Cont.



Cont.
▪ What is Docker?

▪ Open-source platform

▪ Enables developers to build, deploy, run, update and

manage containers

▪ Containers - Standardized, executable components that combine 

application source code with the operating system (OS) libraries 

and dependencies required to run that code in any environment.



Cont.

▪ Advantadges of Docker –

▪ Compared to LXC, Docker offers:

▪ Improved and seamless container portability

▪ Even lighter weight and more granular updates



Cont.
▪ Advantadges of Docker –

▪ Automated container creation

▪ Container versioning

▪ Container reuse

▪ Shared container libraries



Cont.
▪ Docker on different OS



Docker Architecture

Docker object serves a specific purpose in managing and deploying containerized 

applications



Docker Architecture



Docker Objects

▪ Image:

▪ Immutable snapshot of an application and its dependencies.

▪ Used to create containers.

▪ Composed of layers, enhancing efficiency through caching.



Cont.

▪ Container:

▪ Running instance of an image.

▪ Isolated environment for an application.

▪ Lightweight and portable.



Cont.

▪ Network:

▪ Virtual network for container communication.

▪ Enables containers to connect and communicate securely.

▪ Different network drivers for various use cases.



Cont.

▪ Volume:

▪ Persistent data storage outside containers.

▪ Enables sharing data between containers and host.

▪ Preserves data even when containers are removed.



Cont.

▪ Service:

▪ Definition of how containers should behave in a specific 

environment.

▪ Often used in orchestration tools.

▪ Enables scaling, load balancing, and more.



Cont.

▪ Stack:

▪ Collection of services that make up an application.

▪ Allows managing multi-service applications together.

▪ Orchestrated as a single unit.



Docker Engine.

▪ Docker Engine is an open-source containerization technology 

for building and containerizing your applications. Docker 

Engine acts as a client-server application with:

▪ A server with a long-running daemon process dockerd.



Cont.
▪ APIs which specify interfaces that programs can use to talk to and 

instruct the Docker daemon.

▪ A command line interface (CLI) client docker.

▪ The CLI uses Docker APIs to control or interact with the Docker 

daemon through scripting or direct CLI commands.



Docker Images.
▪ Docker images encompass executable app code, tools, 

libraries, and dependencies.

▪ Running a Docker image creates one or more container 

instances.

▪ Images are built from scratch or pulled from repositories.



Cont.
▪ Multiple images stem from a base image, sharing stack 

similarities.

▪ Docker images consist of layers representing versions; new 

layers form top versions.

▪ Previous layers allow rollbacks or are reused in other projects.



Cont.
▪ Containers created from images have their own container 

layer.

▪ Container layer stores container-specific changes and exists 

during runtime.

▪ This iterative process optimizes efficiency by leveraging 

common stack for multiple instances.



Docker Containers.

▪ Docker containers are the live, running instances of Docker 

images.

▪ While Docker images are read-only files, containers are life, 

ephemeral, executable content.

▪ Users can interact with them, and administrators can adjust 

their settings and conditions using Docker commands.



Container vs Image
▪ Docker container vs docker image –

▪ Docker containers serve as isolated runtime environments for 

application development.

▪ Containers create, run, and deploy apps, separated from 

underlying hardware.

▪ Containers utilize shared kernel, virtualize OS, and are lightweight.



Cont.

▪ Docker images are snapshots of containers at specific times.

▪ Docker images are immutable and can be duplicated, shared, or

deleted.

▪ Immutability benefits testing by maintaining unchanged 

images.

▪ Containers depend on images for constructing runtime 

environments and running apps.



Docker is running!



Cont.
▪ Docker running!



Cont.
▪ Docker run command



Cont.
▪ Docker run second time!



Docker Deployment



Docker Tools
▪ Docker Desktop:

▪ Application for Mac/Windows.

▪ Includes Docker Engine, CLI, Compose, Kubernetes, and 

more.

▪ Provides access to Docker Hub.



Cont.
▪ Docker Daemon:

▪ Manages Docker images.

▪ Responds to client commands.

▪ Control center of Docker implementation.

▪ Runs on Docker host.



Cont.
▪ Docker Registry:

▪ Open-source storage and distribution system.

▪ Tracks image versions in repositories.

▪ Uses tagging for identification.

▪ Utilizes git, a version control tool.



Docker Hub.



Cont.

▪ Sevice provided by Docker for finding and
sharing container images

▪ Repositories allow sharing container images
with the Docker community

▪ Container images can be pushed to a repository or pulled from it
▪ Official images (provided by Docker)

▪ Clear documentation, best practices, design for most common use cases,
scanned for security vulnerabilities

▪ Publisher images (provided by external vendors)



Dockerfile.
▪ Docker containers begin with a text file guiding image 

construction.

▪ Docker File automates image creation using CLI instructions.

▪ Docker commands are extensive yet standardized, ensuring 

consistent operations.

▪ Docker builds images automatically by reading the instructions 

from a Dockerfile.



Cont.
▪ # syntax=docker/dockerfile:1

▪ FROM ubuntu:22.04

▪ COPY . /app

▪ RUN make /app

▪ CMD python /app/app.py



Cont.
▪ Each instruction creates one layer:

▪ FROM creates a layer from the ubuntu:22.04 Docker image.

▪ COPY adds files from your Docker client's current directory.

▪ RUN builds your application with make.

▪ CMD specifies what command to run within the container.

▪ Adding new writable layer is called as the container layer



Docker Layers



Cont.

▪ Image has many layers,

▪ Only one read-write layers,

▪ Changes are made to

editable to R/W layers, not 

to underlaying layers,

▪ CoW (Copy on Write) in 

storage drivers.



Cont.
▪ Advantages of using Docker layers –

▪ Good storage management

▪ Faster builds

▪ Faster deployments

▪ Sharing across multiple containers

▪ Enhanced scalability



Cont.



Building and Managing Images

▪ Anatomy of Docker Images:

▪ Layered Architecture: Images composed of stackable layers.

▪ Image Construction: Steps to create an image defined in 

Dockerfile.

▪ Effective Docker files: Writing clear and concise 

instructions.



Cont.
▪ Best Practices for Optimizing Images:

▪ Layer Caching: Reuse unchanged layers for faster builds.

▪ Efficiency: Reduce redundancy in layers for streamlined 

images.

▪ Minimizing Image Size: Eliminate unnecessary files and 

dependencies.

▪ Image Security: Ensuring images are free from vulnerabilities.



Working with Containers

▪ Containerization Essentials:

▪ Running Containers: Initiate containers with docker run 

command.

▪ Container Lifecycle: Manage container states – start, pause, 

stop.



Cont.
▪ Advanced Container Configuration:

▪ Port Mapping: Associate container ports with host ports.

▪ Volume Mounting: Connect containers to persistent storage.

▪ Environment Variables: Set runtime configuration inside 

containers.



Cont.
▪ Inspecting and Managing Containers:

▪ docker ps: List active containers along with key details.

▪ docker exec: Execute commands inside a running container.

▪ Additional Commands: Pause, resume, remove containers, 

etc.



Docker Network
▪ Exploring Docker’s Network Functionality:

▪ Docker’s Network Interaction

▪ Construction of Network Containers

▪ Tailoring Container Networks

▪ Enabling Network Accessibility

▪ Container Discovery



Cont.
▪ Docker handles two main networking types: single-host virtual 

networks and evolving multi-host networks.

▪ Single-host networks ensure container isolation within a host, vital for 

security-conscious setups.

▪ Networked app developers must grasp containerization's impact on 

deployment strategies.



The default local Docker network topology

Cont.



Cont.

▪ Why Docker networking is different from VM or physical 
machine networking?
▪ VMs vs Docker:

▪ VMs: Flexible with NAT and host networking.

▪ Docker: Primarily uses bridge network, Linux for host networking.

▪ Network Isolation: Docker uses namespace, not separate stack.

▪ Container Scaling: Docker handles many containers per host; VMs run

fewer processes.



Cont.
▪ Docker Network Drivers –

▪ Allows to create three different types of network drivers:

▪ The Bridge Driver

▪ The Host Driver

▪ The None Driver

▪ & User-specific:

▪ The Overlay Driver

▪ The Macvlan Driver



Cont.
▪ Bridge –

▪ Use Docker inspect for more details on the connectivity



Cont.
▪ Bridge Driver Drawbacks:

▪ Production Caution: Not advised for production due to IP-based 

communication instead of service discovery.

▪ Dynamic IPs: Containers get different IP addresses with each run, not 

suitable for production stability.

▪ Security Concern: Allows unrelated containers to communicate, posing a 

potential security threat.

▪ Custom Bridge Networks: Later, learn about creating secure 

custom bridge networks.



Cont.
▪ Host –

▪ Shares host's networking stack, directly uses host's network.

▪ Available on Linux hosts only.

▪ Highest performance due to minimal network abstraction.

▪ Limited isolation: Containers share host's network namespace, 

potentially less secure.



Cont.
▪ None –

▪ No networking for the container.

▪ Useful for cases where a container doesn't require network 

connectivity.

▪ Isolated container environments.



Cont.
▪ Overlay -

▪ Designed for multi-host networking, spanning multiple Docker 

hosts.

▪ Utilizes the VXLAN protocol for encapsulation.

▪ Enables communication between containers on different hosts.

▪ Supports automatic service discovery, beneficial for distributed 

applications.

▪ Suitable for complex, distributed architectures.



Cont.
▪ Macvlan –

▪ Assigns a MAC and IP address to containers from the physical 

network.

▪ Containers appear as separate devices on the network.

▪ Useful when containers need direct network access with 

unique IPs.

▪ Can be complex to set up and manage.



Storag
e
▪ Managing data in Docker –

▪ Container Data Storage:

▪ Default: Data in container's writable layer isn't persistent.

▪ Challenge: Moving data from a container is complex.

▪ Storage Drivers:

▪ Storage driver manages filesystem for container data.

▪ Affects performance due to union filesystem.



Cont.



Cont.



Cont.
▪ Persistent Options:

▪ Volumes: Managed by Docker, best for persistence.

▪ Bind Mounts: Host files in containers, good for sharing.

▪ tmpfs Mounts: Memory-only, non-persistent data.



Cont.

▪ Volume Benefits:

▪ Safest for data persistence.

▪ Shared among containers, supports backup.

▪ Volume drivers for remote storage.

▪ Managed by Docker in /var/lib/docker/volumes/ on Linux.

▪ Can be mounted into multiple containers simultaneously.



Cont.

▪ Bind Mounts:

▪ Share host files, high performance.

▪ Be cautious with system files.

▪ Can be located anywhere on the host.

▪ Allows modification by non-Docker processes.

▪ Offers high performance but relies on host filesystem structure.

▪ Ideal for sharing configuration files and artifacts.



Cont.
▪ tmpfs Mounts:

▪ Resides in host system's memory, not persisted on disk.

▪ Used for non-persistent data or sensitive information.

▪ Utilized by Docker's internal processes like swarm services.



Cont.
▪ Usage Tips:

▪ Volumes: Preferred for persistence.

▪ Bind Mounts: For sharing and artifacts.

▪ tmpfs Mounts: Short-lived memory data.



Docker Compose
▪ Docker Compose Basics:

▪ Definition: Tool for defining and running multi-container 

Docker applications with a single configuration file.

▪ Purpose: Simplifies managing and orchestrating multi-

container apps.



Cont.
▪ Services and Containers:

▪ Service: Represents each container in the application.

▪ Configuration: Define images, ports, environment variables, 

volumes, dependencies, etc.



Cont.
▪ Defining Services:

▪ Image: Specify the Docker image.

▪ Build: Use a Dockerfile to build the image.

▪ Ports: Map container ports to host ports.

▪ Environment Variables: Set variables for containers.

▪ Volumes: Define data volumes.

▪ Depends On: Establish service dependencies.



Cont.

▪ Use Cases:

▪ Local Development: Simplify complex setups.

▪ Testing: Define test environments.

▪ Staging and Production: Consistency between environments.

▪ Customization and Extensibility:

▪ Modify default behaviour.

▪ Integration with external tools like CI/CD.



Cont.
▪ Multi-Container Applications:

▪ Scenario: Compose is designed for applications with multiple 

containers that need to work together.

▪ Example: Web server + database for a web application.



Docker in CI/CD
▪ Streaming development and deployment –

▪ Building a website is great but hosting it can lead to problems like 

glitches and downtime.

▪ Traditional approaches involve deploying after writing the entire 

code, causing long delays and inconveniences.

▪ Enter CI/CD Docker: A continuous approach to software 

development that combines Docker containers for smoother 

workflows.



Cont.
▪ What is CI/CD Docker?

▪ CI/CD: Continuous Integration/Continuous Delivery, a methodology 

for SDLC (Software Development Life Cycle).

▪ CI/CD Docker: Implementing CI/CD using Docker containers for 

seamless and efficient development.



Cont.
▪ Role of Docker in CI/CD:

▪ Docker simplifies container creation and deployment.

▪ Detects coding errors during development with container 
technology.

▪ Docker's role:

▪ Streamlines processes.

▪ Arranges pipeline steps logically.

▪ Facilitates concurrent building and testing.

▪ Integrates with tools like GitHub and Jenkins.



Cont.

▪ Benefits of CI/CD Docker:

▪ Rapid error identification and resolution.

▪ Time and cost savings.

▪ Effective real-time server performance assessment.



Docker Orchestration

▪ Automation and Scaling:

▪ As apps scale, automation is crucial.

▪ Tools needed for maintenance, failure recovery, updates, and 

reconfigurations.

▪ Orchestrators Defined:

▪ Orchestrators manage, scale, and maintain containerized apps.

▪ Kubernetes and Docker Swarm are popular options.



Cont.
▪ Benefits of Container Orchestration:

▪ Automation reduces complexity and effort.

▪ Supports agile and DevOps approaches.

▪ Facilitates rapid, iterative development and deployment.



Cont.

▪ Benefits of Container Orchestration:

▪ Enhances containerization benefits:

▪ Efficient resource utilization.

▪ Automated health monitoring and availability.



Cont.
▪ Kubernetes and Docker Swarm:

▪ Kubernetes: Powerful orchestration tool.

▪ Docker Swarm: Another orchestration choice.

▪ Both help in scaling, maintenance, and updates.



Cont.
▪ Docker Swarm –

▪ Docker's native container orchestration tool.

▪ Manages containerized applications across a cluster of 

machines.



Cont.



Cont.
▪ Activation and Nodes:

▪ Activated using docker swarm init.

▪ Nodes: Machines in the Swarm.

▪ Manager Nodes: Control service orchestration.

▪ Worker Nodes: Execute tasks.



Cont.

▪ Services: Define container behaviour.

▪ Replicas: Desired number of container instances.

▪ Load balancing among replicas.

▪ Rolling updates with minimal downtime.

▪ Stacks: Groups of services with shared dependencies.

▪ Each service gets a DNS name.

▪ Communication between containers using service name.



Cont.
▪ Automated TLS certificates for security.

▪ Easy scalability with load distribution.

▪ Fault tolerance with container recovery.

▪ Docker CLI extended for Swarm management.

▪ Limitations:

▪ Simplified compared to Kubernetes.

▪ Suitable for straightforward use cases.



Troubleshootin
g
▪ Container Logs: Check logs with docker logs <container_id> for 

errors.

▪ Image Check: Verify image tags, pull with docker pull if needed.

▪ Networking: Confirm ports are exposed and mapped correctly.

▪ Resources: Ensure sufficient CPU, memory, disk space; monitor 

with docker stats.

▪ Docker Daemon: Restart if needed, check logs at

/var/log/docker.log.



Cont.
▪ Compose Issues: Validate docker-compose.yml, debug services step by 

step.

▪ Volumes: Verify paths, permissions; use docker volume ls to inspect.

▪ Permissions: Ensure user is in docker group, manage container user 

permissions.

▪ Network/DNS: Check connectivity, resolve domain names, inspect proxy 

settings.

▪ Disk Space: Clear unused items with docker system prune, manage disk 

usage.



Security & Best practices

▪ Official Images: Prefer trusted Docker Hub images.

▪ Updates: Keep Docker, images, and containers up to date.

▪ Image Scanning: Use tools to spot vulnerabilities in images.

▪ Minimal Images: Build lightweight images to reduce risk.

▪ Container Isolation: Use Docker's isolation features.



Cont.

▪ Least Privilege: Restrict container capabilities.

▪ Secrets Management: Handle sensitive data securely.

▪ Network Segmentation: Isolate containers with networks.

▪ Monitoring: Implement logging and runtime security.

▪ Host Security: Secure hosts, control API access, and backup 

data.


	Slide 1: Cloud, Virtualization and Containers
	Slide 2: Outline
	Slide 3: Cloud Infrastructure Recap
	Slide 4: Cloud Infrastructure Recap
	Slide 5: Cloud Infrastructure Recap
	Slide 6: Cloud Infrastructure Recap
	Slide 7: Cloud Infrastructure Recap
	Slide 8: Concept of Virtualization
	Slide 9: Cont.
	Slide 10: Cont.
	Slide 11: Cont.
	Slide 12: Types of Virtualization
	Slide 13: Virtual machines (VMs)
	Slide 14: Cont.
	Slide 15: Cont.
	Slide 16: Hypervisors
	Slide 17: Cont.
	Slide 18: Type 1 Hypervisor:
	Slide 19: Types of Hypervisor
	Slide 20: Cont.
	Slide 21: Cont.
	Slide 22: Revisiting the Distinctions
	Slide 23: VMs vs Bare metal servers
	Slide 24: Security
	Slide 25
	Slide 26: Containerization: A New Paradigm
	Slide 27: Cont.
	Slide 28: Containerization
	Slide 29: Cont.
	Slide 30: Cont.
	Slide 31: Application Containerization
	Slide 32: Cont.
	Slide 33: Cont.
	Slide 34: Cont.
	Slide 35: Linux Containers (LXC)
	Slide 36
	Slide 37: Virtualization vs Containerzation!
	Slide 38: Cont.
	Slide 39: Cont.
	Slide 40: Hypervisor Type1 vs Type2 vs Container
	Slide 41: VMs vs Containers
	Slide 42: Introduction to Docker!
	Slide 43: Docker!
	Slide 44: Cont.
	Slide 45: Cont.
	Slide 46: Cont.
	Slide 47: Cont.
	Slide 48: Cont.
	Slide 49: Cont.
	Slide 50: Cont.
	Slide 51: Docker Architecture
	Slide 52: Docker Architecture
	Slide 53: Docker Objects
	Slide 54: Cont.
	Slide 55: Cont.
	Slide 56: Cont.
	Slide 57: Cont.
	Slide 58: Cont.
	Slide 59: Docker Engine.
	Slide 60: Cont.
	Slide 61: Docker Images.
	Slide 62: Cont.
	Slide 63: Cont.
	Slide 64: Docker Containers.
	Slide 65: Container vs Image
	Slide 66: Cont.
	Slide 67
	Slide 68: Cont.
	Slide 69: Cont.
	Slide 70: Cont.
	Slide 71: Docker Deployment
	Slide 72: Docker Tools
	Slide 73: Cont.
	Slide 74: Cont.
	Slide 75: Docker Hub.
	Slide 76: Cont.
	Slide 77: Dockerfile.
	Slide 78: Cont.
	Slide 79: Cont.
	Slide 80: Docker Layers
	Slide 81: Cont.
	Slide 82: Cont.
	Slide 83: Cont.
	Slide 84: Building and Managing Images
	Slide 85: Cont.
	Slide 86: Working with Containers
	Slide 87: Cont.
	Slide 88: Cont.
	Slide 89: Docker Network
	Slide 90: Cont.
	Slide 91: Cont.
	Slide 92: Cont.
	Slide 93: Cont.
	Slide 94: Cont.
	Slide 95: Cont.
	Slide 96: Cont.
	Slide 97: Cont.
	Slide 98: Cont.
	Slide 99: Cont.
	Slide 100: Storage
	Slide 101: Cont.
	Slide 102: Cont.
	Slide 103: Cont.
	Slide 104: Cont.
	Slide 105: Cont.
	Slide 106: Cont.
	Slide 107: Cont.
	Slide 108: Docker Compose
	Slide 109: Cont.
	Slide 110: Cont.
	Slide 111: Cont.
	Slide 112: Cont.
	Slide 113: Docker in CI/CD
	Slide 114: Cont.
	Slide 115: Cont.
	Slide 116: Cont.
	Slide 117: Docker Orchestration
	Slide 118: Cont.
	Slide 119: Cont.
	Slide 120: Cont.
	Slide 121: Cont.
	Slide 122: Cont.
	Slide 123: Cont.
	Slide 124: Cont.
	Slide 125: Cont.
	Slide 126: Troubleshooting
	Slide 127: Cont.
	Slide 128: Security & Best practices
	Slide 129: Cont.

