Cloud, Virtualization and Containers

LKNOG

Outline

= Cloud Infrastructure Recap

= Concept of Virtualization

= Hypervisors: Underlying Virtualization Technology

= Containerization: A New Paradigm

= Virtualization vs Containerization: Comparing Approaches

= |ntroduction to Docker: Containerization Made Easy

Cloud Infrastructure Recap

What are the components of cloud infrastructure?

= Hardware

= Virtualization
= Storage

= Network

Cloud Infrastructure Recap

= Hardware Resources -

= Physical Hardware Distribution:

= Positioned at Multiple Geographic Locations

= Networking Equipment:

= Facilitating Data Transmission

= Storage Arrays:
= Storing Data Securely
* Central Element:

= Servers Play a Vital Role

Cloud Infrastructure Recap

= Network Infrastructure:

= Data Centers: Essential facilities hosting hardware resources, Interconnected by high-

speed networks for seamless communication.

= Varied network topologies employed within data centers, Distributes data traffic

across multiple servers for optimization.

= Robust security measures, including firewalls, ensure data protection and

Interconnectivity enhances efficient data flow and component interaction.

Cloud Infrastructure Recap

= Storage Solutions:

= Storage Types: Distinguishing Block, Object, and File Storage with Their Respective
Applications

= Data Replication: Implementing Strategies to Duplicate Data for Enhanced Availability

and Disaster Recovery

= Elastic Storage: Adapting Storage Resources to Fluctuating Demands through Scalability

Cloud Infrastructure Recap

= Virtualization -
= Essential Role: Vital Component in Cloud Infrastructure

= Abstraction of Resources: Separating Data Storage and Computing from

Hardware

= Enhanced Interaction: Facilitating Communication Between Users and Cloud

Infrastructure

= Common Practice: Frequently Applied to Data Storage and Computing

Resources

Concept of Virtualization

= Let's explore the depths of virtualization!

= Virtualization: An Efficient Process for Managing PCs and Hardware

= Utilizes an Abstraction Layer Above Computer Hardware

Cont.

= What Constitutes the Hardware Components of a Single Computer?

= Processors, memory, storage and more

" These Components Are partitioned Across Multiple Virtual

Computers, Known As:

= Virtual machines (VMs)

Cont.

= Virtualization has become the prevailing norm in modern

enterprise IT architecture.

= Cloud resources exhibit cost-effectiveness as workloads

expand, allowing seamless scalability.

Cont.

= Key Benefits:

= Substantial reduction in IT expenditures.
= Streamlined management processes.
= Minimal downtime coupled with heightened resilience.

= Expedited provisioning of resources.

Types of Virtualization

= Server Virtualization
= Desktop Virtualization
= Network Virtualization
= Storage Virtualization

= Application Virtualization

Types Of virtualization
Hardware Application Server
Virtualization

Virtualization Virtualization

R &
& . 0 o8

Network Desktop
Virtualization Virtualization

Storage
Virtualization

www.educba.con

Virtual machines (VMs)

Avirtual envirnoment that
simulate physical computation
in software form,

Server file of VM’s
configuration

Cont.

= Types of VMs

= MAC, Windows, Andriod, Linux and iOS
= Java, Python
= VMware software

= Advantadges of VM

= Resources utilization
Scalibility
Portability
Flexibility &
Security

Cont.

= VM can’tinteract with the hardware directly.

= So,how does virtualization works?

= Hypervisior is refered as the software layer that coordinates VMs.

= Serves as an interface.

Hypervisors

= Before hypervisors, most of the physical computers used to run on

one OS at a time.

= Downside : Wasted resources, because OS could not use all

computer’s power.

Cont.

= Underlying Virtualization Technology

= Known as virtual machine monitor (VMM)

= |solates VMs logically, assigning each VM slices of underlying

computing power, memory, and storage.

Type 1 Hypervisor:

= Type 1 Hypervisor:

= Runs directly on top of physical hardware (usally server)

= Bare metal

= Separate software product to create and manipulate VMs.

Types of Hypervisor

= Type 1 Hypervisor:

= VM resources are scheduled directly on top of hardware

= Which Type 1 hypervisor is associated with the penguin mascot?
= Example - KYM
= Others - ESXi and Vsphere, XEN

Cont.

= Type 2 Hypervisior:

= Doesn’t run directly on the underlaying hardware
= Hosted as an appliction on host OS

= Single-user desktops

= Examples - What virtualization software is well-known?
= Oracle Virtual Box
= VMware Fusion, Workstation

Cont.

= Create VMs manually and install guest OS
= Must access resources via the host OS

= Latency issues, security risks and affect performance

Revisiting the Distinctions

HV Hypervigor

 ———
Host Hardware Host Hardware Hogt Hardware

VMs vs Bare metal servers

Virtual Machines:

Bare Metal Servers:

Created and managed by a
hypervisor.

Operate in isolated environments.

Share physical server resources.

Flexible provisioning and scaling.

Hardware-independent and
portable.

* Run directly on physical hardware.

» Challenges in isolation.
» Dedicated resources per server.
» Limited flexibility in provisioning.

» Tied to specific hardware.

Security

= Security Advantages of Virtualization:

= Malware-infected VMs can be rolled back using snapshots.

= [solated environments limit the impact of breaches.

= Challenges:

= Hypervisor attacks can affect multiple VMs.

Containers represent the next stage beyond virtualization!

Containerization: ANew Paradigm

= Containers hold undeniable importance in modern computing!

= Throughout our exploration, we'll cover topics such as:

= The reasons driving the adoption of containers.
= How they enhance our processes.
= The diverse domains that leverage container technology.

Cont.

= Leveraging Containerization at Google:
= Addressing issues encountered with VM models.

= Streamlined Operating System Usage:
= Containers avoid the necessity for a complete OS.

= Swift Start-Up and Unparalleled Portability:
= Containers boast quick launch times and exceptional mobility.

= Effortless Migration Across Environments:
= Moving containers between VMs, bare metal, and the cloud is a smooth process.

Containerization

= What is Containerization?

= Packaging of a software code with just the operating system (0S),
libs and dependencies

= Creating a single lightweight executable - called Container
= Resource efficient and portability

Cont.

= What is Containerization?

= Defacto comute units of modern cloud-native applications

= Allows developers to create and deploy application faster
and securely

= |mportant - Allows applications to be “written once and run anywhere.”

Cont.

= What is container?

= Often referred as “lishtweight”

= Standardized packaging for software dependencies

= [solate apps from each other

= Works for all major Linux distributions, MacOS, Windows

Application Containerization

= Containers bundle an application, along with its configuration files,
libraries, and dependencies, into a single executable package.

= Unlike traditional approaches, containers don't include a copy of the
operating system.

= Runtime engines (e.g., Docker runtime) are used to facilitate
container sharing of the host OS.

Cont.

= Shared Resources and Efficiency:

= Common bins and libraries can be shared among multiple
containers.

= Containers are more efficient in terms of capacity and start-up
time compared to running a full OS with each application.

= Smaller footprint and faster start-up lead to higher server
efficiency.

Cont.

= |[solation and Security:

= Containers isolate applications, preventing the spread of malicious
code from one container to another or to the host system.

= Portability:
= Containerized applications are portable and can run consistently
across various platforms, clouds, and OS types.

= Easily transferable between desktop, VMs, different OSes, and
cloud environments.

Virtual machineg (\/Mg)

Host hardware

Containers

Appl

Bin/lib

Container coftware

Hoet hardware

Linux Containers (LXC)

= Linux and Container Technology:

» Linux is an open-source operating system.
= |t features built-in container technology.

= |jnux Containers:

= Linux containers are self-contained environments.
= They enable multiple Linux-based applications on a single host.

LXC

= Deployment for Data-Intensive Applications
= Efficiently handle writing or reading large amounts of data.

= Linux Namespace:
= Containers utilize Linux namespaces to allocate functionalities.
= Namespaces isolate resources such as networking, process IDs, etc.

Virtualization vs Containerzation!

= Containers and virtual machines (VMs) are both used to run
multiple software types in one environment.

= Container technology offers additional benefits beyond
virtualization, becoming a preferred choice for IT
professionals.

Cont.

= Virtualization Efficiency:

= Virtualization runs multiple operating systems and applications on
a single physical computer.

= Each application and its dependencies are packaged as a VM,
leading to cost savings.

Cont.

= Containerization Efficiency:

= Containers bundle application code, configuration, and dependencies into
an executable package.

= Unlike VMs, containers don't include a copy of the OS but share the host’s
OS kernel.

= Container runtime engine enables sharing the OS among all containers on
the system.

Hypervisor Type1 vs Type2 vs Container

Hypervisor Type 1 Hypervisor Type 2 Container
_bare metal hypervisor® Jhosted hypervisor®

Virtual Machine (Vi)

Virtual Machine: (VM)

l EBinsiLibs Bins/Libs m

Infrastructure

VMs vs Containers

VIRTUAL MACHINES CONTAINERS
Each VM runs on f h r- | All hare th me kernel.
Guest Operating .ac uns on top o ' ypt'a gues'sts s a' e the sal . e. erne .
Systemn visor and kernel loaded into its | Kernel image is loaded in its physi-
y own memory region. cal memory.
Suffers light overhead as the .
Performance L . Almost native performance as com-
Efficienc machine instructions get trans- ared to the underlying host OS
Y lated from guest to host OS. P Ying '
Security Complete Isolation. Isolation using namespaces.
Take less storage as the base OS
Storage Takes more storage. .
is shared.
Higher level of Isolation. Need . .
. . . . Subdirectories can be transparently
Isolation special techniques for file
A mounted and can be share.
sharing.
Can be linked to virtual or Leyerage standar'ds like ”?C mech-
. . . anisms such as signals, pipes,
. physical switches. Hypervisor
Networking]] sockets, etc.
has its own buffers to improve .
Advanced features like NIC are not
I/O performance. .
available.
Bootup Time Take a few minutes to boot. Boot up in a few seconds.

Introduction to Docker!

= Docker is a game-changing platform for modern
application deployment.

= |t takes containerization to the next level, making

app management a breeze. d k
oCcKer

Docker!

= Docker is so popular today that “Docker” and “containers” are used
interchangeably.

» Open
Virtualiza- Source Containers
tion laaS

2009

. : . -
@Szm vmware QV_\I/S7 Hlueroku B cowrguon &

Cont.

» dotCloud started Docker as Platform as a service (Paa$).

» dotCloud leveraged LXC behind

_& HHYS
docker docker

(original logo) (new logo)

= The word “Docker” comes from a British colloquialism meaning dock
worker - somebody who loads and unloads ships.

Cont.

= Why Docker is so important?

= Docker provides what is called an abstraction

= Abstraction - Allows work with complicated things in simplified

terms.
= Software community adaption of container and Docker
= Amazon, Microsoft, and Google

= Cross platform & open way

Cont.

Docker

A single effort
to manage
deployment

Life before Docker

Three times the
effort to manage /
deployment

Install, configure, Install, configure, Install, configure,
and maintain complex and maintain complex and maintain complex
application application application

= Iaptop

Life with Docker

Install, configure,
and maintain complex
application

!

docker run
——— | Dev laptop

docker run
/ Docker image Test server

docker run

Live server

il

Cont.

= What is Docker?
= Open-source platform

= Enables developers to build, deploy, run, update and

Mmanage containers

= Containers - Standardized, executable components that combine
application source code with the operating system (OS) libraries

and dependencies required to run that code in any environment.

Cont.

= Advantadges of Docker -

= Compared to LXC, Docker offers:
* Improved and seamless container portability

= Even lighter weight and more granular updates

Cont.

= Advantadges of Docker -

= Automated container creation
= Container versioning
= Container reuse

= Shared container libraries

Cont.

= Docker on different OS

Windows + Linux Linux Linux VM

cée o ©

v

S ’
. S, 4

Docker Architecture

BUILD .

CLIENT

e AL

REMOTE
API CONTAINERS IMAGES

NORDICAPIS.COM

Docker object serves a specific purpose in managing and deploying containerized
applications

Docker Architecture

[Client | Docker Host Registry [
Images]—

Containers
. . : L, NGiMX

f" [m]]]m]f
¥,

@ recs g ®

docker build f s ree e - d g @

ostgreSQL

‘ _________ —— o — -

Docker

A
daemon
dockerpul F—===tr====P| | e — e ———— - = =

Extensions '—
\tj 7]
JFrog a

& B D

Docker Objects

= |Image:

= Immutable snapshot of an application and its dependencies.
= Used to create containers.

= Composed of layers, enhancing efficiency through caching.

Cont.

= Container:

= Running instance of an image.
= [solated environment for an application.

= Lightweight and portable.

Cont.

= Network:

= Virtual network for container communication.
= Enables containers to connect and communicate securely.

= Different network drivers for various use cases.

Cont.

= Volume:

= Persistent data storage outside containers.
= Enables sharing data between containers and host.

= Preserves data even when containers are removed.

Cont.

= Service:
= Definition of how containers should behave in a specific
environment.
= Often used in orchestration tools.

= Enables scaling, load balancing, and more.

Cont.

= Stack:

= Collection of services that make up an application.
= Allows managing multi-service applications together.

= Orchestrated as a single unit.

Docker Engine.

= Docker Engine is an open-source containerization technology
for building and containerizing your applications. Docker

Engine acts as a client-server application with:

= Aserver with a long-running daemon process dockerd.

Cont.

= APIs which specify interfaces that programs can use to talk to and

instruct the Docker daemon.

= Acommand line interface (CLI) client docker.

= The CLI uses Docker APls to control or interact with the Docker

daemon through scripting or direct CLI commands.

Docker Images.

= Docker images encompass executable app code, tools,
libraries, and dependencies.

= Running a Docker image creates one or more container
instances.

= |mages are built from scratch or pulled from repositories.

Cont.

= Multiple images stem from a base image, sharing stack
similarities.

= Docker images consist of layers representing versions; new
layers form top versions.

= Previous layers allow rollbacks or are reused in other projects.

Cont.

= Containers created from images have their own container
layer.

= Container layer stores container-specific changes and exists
during runtime.

= This iterative process optimizes efficiency by leveraging
common stack for multiple instances.

Docker Containers.

= Docker containers are the live, running instances of Docker
images.
= While Docker images are read-only files, containers are life,

ephemeral, executable content.

= Users can interact with them, and administrators can adjust

their settings and conditions using Docker commands.

Container vs Image

= Docker container vs docker image -

= Docker containers serve as isolated runtime environments for

application development.

= Containers create, run, and deploy apps, separated from

underlying hardware.

= Containers utilize shared kernel, virtualize OS, and are lightweight.

Cont.

= Dockerimages are snapshots of containers at specific times.
= Dockerimages are immutable and can be duplicated, shared, or

deleted.

= |Immutability benefits testing by maintaining unchanged

iImages.

= Containers depend on images for constructing runtime

environments and running apps.

Docker is running!

Cont.

= Docker running!

Container Container Container
space A space B space C

Database
Web server

User space Hello World

Operating system

10

CPU Memory
Network interface | Persistent storage Devices

Cont.

Docker

= Docker run command
searches

Docker looks
for the image
on this Docker Hub
computer for the image \
Is it

on Docker
Docker creates The image
, . Docker
The container a new container layers are
)) Pe— - . < downloads
is running! and starts installed on :
. the image
the program this computer

Is it
installed?

Hub?

A

Cont.

= Docker run second time!

Docker looks
for the image
on this
computer

Is it
installed?

Docker creates
a new container
and starts
the program

The container
| . .
is running!

Docker Deployment

Development Team

Request Resources

Scipt the Deployment

Tweak the Deployment

4

,

Discovera Dependency

v

—
\
| Application I Deployed '
|

Loop NTimes

Install Dependency

Development Team ; Operations Team
|
Buld mage :
|
|
\J ‘ |
ShipImage o Registry : Provide onfiguraionnformation]
| 1
|
y l
_—
l Deploy :
|
|

Appicaion s Deployed

Docker Tools

= Docker Desktop:
= Application for Mac/Windows.
» Includes Docker Engine, CLI, Compose, Kubernetes, and

more.

= Provides access to Docker Hub.

Cont.

= Docker Daemon:

= Manages Docker images.
= Responds to client commands.
= Control center of Docker implementation.

= Runs on Docker host.

Cont.

= Docker Registry:

= Open-source storage and distribution system.
= Tracks image versions in repositories.
= Uses tagging for identification.

= Utilizes git, a version control tool.

Docker Hub.

Docker Hub

Organizations

& mysql) Explore Repositories

& Docker & containers

Filters
Images
Verified Publisner @

Official Images @
Offcal Images Pusished By Docker

Categories @
Analytics

| Application Frameworks
Application Infrastructure
Applcation Services
Base Images
Databases
DevOps Tools
Featured Images
Messaging Services
Monitoring
Operating Systems
Programming Languages.
Security

B Plugins

Docker Hub

$3° -

Developers

rosoft Azure

i ‘ redhat

— vmware

DigitalOcean

opemitack

Dev & Ops

1-250f 6,754,417 available images.

Oracle Java 8 SE (Server JRE)
By Oracle « Updated 3 year ago

lava

Oracle Java 8 SE (Server JRE)

Programming Lang.

ubuntu

Updated 17 hours ago

Ubuntu s a Debian-based Linux operating system based on free software.

postgres

Updated 17 hours 3go

The PostgresqL object-relational database system provides reliabllity and data integrity.

Container Uik’ ARM Powerp 1BMZ 385 ARMGS xB651 mipsedie

Most Popular -
VERIFIED PUBLISHER 1

0

Stars

10M+ 10K+
Downloads Stars

Operating Systems

OFFICIALIMAGE

10M+
Downloads

9.3K
Stars

atabases

Cont.

= Sevice provided by Docker for finding and &@ &@" ‘9 i

sharing container images B0l g | Pk *pul
Image Image Image Image

= Repositories allow sharing container images & vocker Registry/Hub

with the Docker community

= Containerimages can be pushed to a repository or pulled from it

= Official images (provided by Docker)
= (Clear documentation, best practices, design for most common use cases,
scanned for security vulnerabilities

= Publisher images (provided by external vendors)

Dockerfile.

= Docker containers begin with a text file guiding image

construction.

= Docker File automates image creation using CLI instructions.
= Docker commands are extensive yet standardized, ensuring

consistent operations.

= Docker builds images automatically by reading the instructions

from a Dockerfile.

Cont.

syntax=docker/dockerfile:1

FROM ubuntu:22.04
COPY . /app

RUN make /app

CMD python /app/app.py

Cont.

= Each instruction creates one layer:

= FROM creates a layer from the ubuntu:22.04 Docker image.
= COPY adds files from your Docker client's current directory.
= RUN builds your application with make.

= CMD specifies what command to run within the container.

= Adding new writable layer is called as the container layer

Docker Layers

EL‘ Dockerfile—

FROM golang:1.20-alpine

WORKDIR /src

COPY .

RUN go mod download

RUN go build -o /bin/client ./cmd/client
RUN go build -o /bin/server ./cmd/server

ENTRYPOINT ["/bin/server"]

Builder

— —
"ﬂm Image—
-

= Layers

FROM golang:1.20-alpine

WORKDIR /src

CoPY . .

RUN go mod download

RUN go build -o /bin/client ./cmd/client

RUN go build -o /bin/server ./cmd/server

ENTRYPOINT ["/bin/server"]

Cont.

ContainerLayer

Layer 1- RUN yum install -y wget

Base Layer — FROM centos:7

Image

- Read & Write

—— Read Only

—— Read Only

Image has many layers,

Only one read-write layers,

Changes are made to
editable to R/W layers, not

to underlaying layers,
CoW (Copy on Write) in

storage drivers.

Cont.

= Advantages of using Docker layers -

= Good storage management

= Faster builds

= Faster deployments

= Sharing across multiple containers

= Enhanced scalability

Cont.

i __Thin R/W layer | { ThinR/W layer | i Thin R/W layer |

N

91e54dfb1179 0B

s 8fb6632 1.895 KB
€22013c84729 194.5 KB

d3aif33e8a5a 188.1 MB

ubuntu:15.04 Image

Building and Managing Images

= Anatomy of Docker Images:

= Layered Architecture: Images composed of stackable layers.
= Image Construction: Steps to create an image defined in

Dockerfile.

= Effective Docker files: Writing clear and concise

instructions.

Cont.

= Best Practices for Optimizing Images:
= Layer Caching: Reuse unchanged layers for faster builds.
= Efficiency: Reduce redundancy in layers for streamlined
images.
» Minimizing Image Size: Eliminate unnecessary files and

dependencies.

» Image Security: Ensuring images are free from vulnerabilities.

Working with Containers

= Containerization Essentials:

= Running Containers: Initiate containers with docker run

command.

= Container Lifecycle: Manage container states - start, pause,

stop.

Cont.

= Advanced Container Configuration:

= Port Mapping: Associate container ports with host ports.

= Volume Mounting: Connect containers to persistent storage.
= Environment Variables: Set runtime configuration inside

containers.

Cont.

* |nspecting and Managing Containers:

= docker ps: List active containers along with key details.

= docker exec: Execute commands inside a running container.

= Additional Commands: Pause, resume, remove containers,

etc.

Docker Network

= Exploring Docker’s Network Functionality:

= Docker’s Network Interaction

= Construction of Network Containers
= Tailoring Container Networks

» Enabling Network Accessibility

= Container Discovery

Cont.

= Docker handles two main networking types: single-host virtual
networks and evolving multi-host networks.

= Single-host networks ensure container isolation within a host, vital for
security-conscious setups.

= Networked app developers must grasp containerization’'s impact on

deployment strategies.

Cont.

T Tt TT Tt Yy

 network stack Docker bridge virtual interface (docker0)

e e e + ,,,,,,,,,,,,,,,,,,,,,,, * ,,,,,,,,,,, .

Physical network interface

Container 1 Container 2
Private Loopback Private Loopback
interface interface interface interface
A A A A A A

S

Container 1 virtual interface

Container 2 virtual interface

{

1

!

t

Operating system

(host interface)

{

f

Logical host interface

The default local Docker network topology

Cont.

= Why Docker networking is different from VM or physical
machine networking?

= VMs vs Docker:

= VMs: Flexible with NAT and host networking.
= Docker: Primarily uses bridge network, Linux for host networking.

= Network Isolation: Docker uses namespace, not separate stack.
= Container Scaling: Docker handles many containers per host; VMs run

fewer processes.

Cont.

= Docker Network Drivers -

= Allows to create three different types of network drivers:
= The Bridge Driver
= The Host Driver
= The None Driver
= & User-specific:
= The Overlay Driver

= The Macvlan Driver

Cont.

= Bridge -

$ docker network 1s
NETWORK ID NAME DRIVER
5077a7b25aeé6 bridge bridge

7e25f334b07f host host
475e50be0fe0 none null

= Use Docker inspect for more details on the connectivity

Cont.

= Bridge Driver Drawbacks:

= Production Caution: Not advised for production due to IP-based
communication instead of service discovery.

= Dynamic IPs: Containers get different IP addresses with each run, not
suitable for production stability.

= Security Concern: Allows unrelated containers to communicate, posing a
potential security threat.

= Custom Bridge Networks: Later, learn about creating secure
custom bridge networks.

Cont.

= Host -

Shares host's networking stack, directly uses host's network.
Available on Linux hosts only.
Highest performance due to minimal network abstraction.

Limited isolation: Containers share host's network namespace,
potentially less secure.

Cont.

= None -

= No networking for the container.

= Useful for cases where a container doesn't require network
connectivity.

= |solated container environments.

Cont.

= QOverlay -

= Designed for multi-host networking, spanning multiple Docker
hosts.

= Utilizes the VXLAN protocol for encapsulation.
= Enables communication between containers on different hosts.

= Supports automatic service discovery, beneficial for distributed
applications.

= Suitable for complex, distributed architectures.

Cont.

= Macvlan -

= Assigns a MAC and IP address to containers from the physical
network.

= Containers appear as separate devices on the network.

= Useful when containers need direct network access with
unique IPs.

= Can be complex to set up and manage.

Storag
e

= Managing data in Docker -

= Container Data Storage:

= Default: Data in container's writable layer isn't persistent.
= Challenge: Moving data from a container is complex.

= Storage Drivers:
= Storage driver manages filesystem for container data.
= Affects performance due to union filesystem.

Cont.

What is Docker Volume?

Container Virtual File System

/var/lib/mysql/data /

Host File System

/home/mount/data /

Cont.

Container
= tmpfs
bind I mount
mount volume
Filesystem Memory
I Docker area :
_

Cont.

= Persistent Options:

= Volumes: Managed by Docker, best for persistence.
= Bind Mounts: Host files in containers, good for sharing.
= tmpfs Mounts: Memory-only, non-persistent data.

Cont.

= Volume Benefits:
= Safest for data persistence.
= Shared among containers, supports backup.
= Volume drivers for remote storage.
= Managed by Docker in /var/lib/docker/volumes/ on Linux.

= Can be mounted into multiple containers simultaneously.

Cont.

= Bind Mounts:
= Share host files, high performance.
= Be cautious with system files.
= Can be located anywhere on the host.
= Allows modification by non-Docker processes.
= Offers high performance but relies on host filesystem structure.

= |deal for sharing configuration files and artifacts.

Cont.

= tmpfs Mounts:

= Resides in host system'’s memory, not persisted on disk.
= Used for non-persistent data or sensitive information.

= Utilized by Docker’s internal processes like swarm services.

Cont.

= Usage Tips:

= Volumes: Preferred for persistence.

= Bind Mounts: For sharing and artifacts.

= tmpfs Mounts: Short-lived memory data.

Docker Compose

= Docker Compose Basics:

= Definition: Tool for defining and running multi-container
Docker applications with a single configuration file.

= Purpose: Simplifies managing and orchestrating multi-
container apps.

Cont.

= Services and Containers:

= Service: Represents each container in the application.

= Configuration: Define images, ports, environment variables,
volumes, dependencies, etc.

Cont.

= Defining Services:

= Image: Specify the Docker image.

= Build: Use a Dockerfile to build the image.
= Ports: Map container ports to host ports.

* Environment Variables: Set variables for containers.
= Volumes: Define data volumes.

= Depends On: Establish service dependencies.

Cont.

= Use Cases:

= Local Development: Simplify complex setups.

= Testing: Define test environments.

= Staging and Production: Consistency between environments.
= Customization and Extensibility:

= Modify default behaviour.

= Integration with external tools like CI/CD.

Cont.

= Multi-Container Applications:

= Scenario: Compose is designhed for applications with multiple

containers that need to work together.

= Example: Web server + database for a web application.

Docker in ClI/CD

= Streaming development and deployment -
= Building a website is great but hosting it can lead to problems like

glitches and downtime.

= Traditional approaches involve deploying after writing the entire
code, causing long delays and inconveniences.

= Enter CI/CD Docker: A continuous approach to software

development that combines Docker containers for smoother

workflows.

Cont.

= What is CI/CD Docker?

= CI/CD: Continuous Integration/Continuous Delivery, a methodology

for SDLC (Software Development Life Cycle).

= C|I/CD Docker: Implementing CI/CD using Docker containers for

seamless and efficient development.

Cont.

= Role of Docker in CI/CD:
= Docker simplifies container creation and deployment.

= Detects coding errors during development with container
technology.

= Docker's role:
= Streamlines processes.
= Arranges pipeline steps logically.
= Facilitates concurrent building and testing.
= Integrates with tools like GitHub and Jenkins.

Cont.

= Benefits of CI/CD Docker:

= Rapid error identification and resolution.
= Time and cost savings.

= Effective real-time server performance assessment.

Docker Orchestration

= Automation and Scaling:

= As apps scale, automation is crucial.

= Tools needed for maintenance, failure recovery, updates, and

reconfigurations.

= QOrchestrators Defined:
= Orchestrators manage, scale, and maintain containerized apps.

= Kubernetes and Docker Swarm are popular options.

Cont.

= Benefits of Container Orchestration:

= Automation reduces complexity and effort.

= Supports agile and DevOps approaches.

= Facilitates rapid, iterative development and deployment.

Cont.

= Benefits of Container Orchestration:
= Enhances containerization benefits:
= Efficient resource utilization.

= Automated health monitoring and availability.

Cont.

= Kubernetes and Docker Swarm:

= Kubernetes: Powerful orchestration tool.

= Docker Swarm: Another orchestration choice.

= Both help in scaling, maintenance, and updates.

Cont.

= Docker Swarm -

= Docker's native container orchestration tool.

= Manages containerized applications across a cluster of
machines.

Cont.

Docker Swarm 1

Manager

]

Dmkery

—— Node 1

Docker
daemon

-,

Comtamer-ar

-

e

Node 2 —,

Containercs

-~

\

.

—— Node N —,

Contamer

.

Cont.

= Activation and Nodes:

Activated using docker swarm init.

Nodes: Machines in the Swarm.

Manager Nodes: Control service orchestration.
Worker Nodes: Execute tasks.

Cont.

= Services: Define container behaviour.

= Replicas: Desired number of container instances.

= Load balancing among replicas.

= Rolling updates with minimal downtime.

= Stacks: Groups of services with shared dependencies.
= Each service gets a DNS name.

= Communication between containers using service name.

Cont.

= Automated TLS certificates for security.
= Easy scalability with load distribution.
= Fault tolerance with container recovery.

= Docker CLI extended for Swarm management.

= Limitations:
= Simplified compared to Kubernetes.

= Suitable for straightforward use cases.

Troubleshootin
g

= Container Logs: Check logs with docker logs <container_id> for
errors.

= Image Check: Verify image tags, pull with docker pull if needed.

= Networking: Confirm ports are exposed and mapped correctly.
= Resources: Ensure sufficient CPU, memory, disk space; monitor
with docker stats.

= Docker Daemon: Restart if needed, check logs at
/var/log/docker.log.

Cont.

= Compose Issues: Validate docker-compose.yml, debug services step by
step.

= Volumes: Verify paths, permissions; use docker volume ls to inspect.

= Permissions: Ensure user is in docker group, manage container user

permissions.

= Network/DNS: Check connectivity, resolve domain names, inspect proxy
settings.

= Disk Space: Clear unused items with docker system prune, manage disk
usage.

Security & Best practices

Official Images: Prefer trusted Docker Hub images.

Updates: Keep Docker, images, and containers up to date.

Image Scanning: Use tools to spot vulnerabilities in images.

Minimal Images: Build lightweight images to reduce risk.

Container Isolation: Use Docker's isolation features.

Cont.

= | east Privilege: Restrict container capabilities.
= Secrets Management: Handle sensitive data securely.
= Network Segmentation: Isolate containers with networks.

= Monitoring: Implement logging and runtime security.

= Host Security: Secure hosts, control APl access, and backup
data.

	Slide 1: Cloud, Virtualization and Containers
	Slide 2: Outline
	Slide 3: Cloud Infrastructure Recap
	Slide 4: Cloud Infrastructure Recap
	Slide 5: Cloud Infrastructure Recap
	Slide 6: Cloud Infrastructure Recap
	Slide 7: Cloud Infrastructure Recap
	Slide 8: Concept of Virtualization
	Slide 9: Cont.
	Slide 10: Cont.
	Slide 11: Cont.
	Slide 12: Types of Virtualization
	Slide 13: Virtual machines (VMs)
	Slide 14: Cont.
	Slide 15: Cont.
	Slide 16: Hypervisors
	Slide 17: Cont.
	Slide 18: Type 1 Hypervisor:
	Slide 19: Types of Hypervisor
	Slide 20: Cont.
	Slide 21: Cont.
	Slide 22: Revisiting the Distinctions
	Slide 23: VMs vs Bare metal servers
	Slide 24: Security
	Slide 25
	Slide 26: Containerization: A New Paradigm
	Slide 27: Cont.
	Slide 28: Containerization
	Slide 29: Cont.
	Slide 30: Cont.
	Slide 31: Application Containerization
	Slide 32: Cont.
	Slide 33: Cont.
	Slide 34: Cont.
	Slide 35: Linux Containers (LXC)
	Slide 36
	Slide 37: Virtualization vs Containerzation!
	Slide 38: Cont.
	Slide 39: Cont.
	Slide 40: Hypervisor Type1 vs Type2 vs Container
	Slide 41: VMs vs Containers
	Slide 42: Introduction to Docker!
	Slide 43: Docker!
	Slide 44: Cont.
	Slide 45: Cont.
	Slide 46: Cont.
	Slide 47: Cont.
	Slide 48: Cont.
	Slide 49: Cont.
	Slide 50: Cont.
	Slide 51: Docker Architecture
	Slide 52: Docker Architecture
	Slide 53: Docker Objects
	Slide 54: Cont.
	Slide 55: Cont.
	Slide 56: Cont.
	Slide 57: Cont.
	Slide 58: Cont.
	Slide 59: Docker Engine.
	Slide 60: Cont.
	Slide 61: Docker Images.
	Slide 62: Cont.
	Slide 63: Cont.
	Slide 64: Docker Containers.
	Slide 65: Container vs Image
	Slide 66: Cont.
	Slide 67
	Slide 68: Cont.
	Slide 69: Cont.
	Slide 70: Cont.
	Slide 71: Docker Deployment
	Slide 72: Docker Tools
	Slide 73: Cont.
	Slide 74: Cont.
	Slide 75: Docker Hub.
	Slide 76: Cont.
	Slide 77: Dockerfile.
	Slide 78: Cont.
	Slide 79: Cont.
	Slide 80: Docker Layers
	Slide 81: Cont.
	Slide 82: Cont.
	Slide 83: Cont.
	Slide 84: Building and Managing Images
	Slide 85: Cont.
	Slide 86: Working with Containers
	Slide 87: Cont.
	Slide 88: Cont.
	Slide 89: Docker Network
	Slide 90: Cont.
	Slide 91: Cont.
	Slide 92: Cont.
	Slide 93: Cont.
	Slide 94: Cont.
	Slide 95: Cont.
	Slide 96: Cont.
	Slide 97: Cont.
	Slide 98: Cont.
	Slide 99: Cont.
	Slide 100: Storage
	Slide 101: Cont.
	Slide 102: Cont.
	Slide 103: Cont.
	Slide 104: Cont.
	Slide 105: Cont.
	Slide 106: Cont.
	Slide 107: Cont.
	Slide 108: Docker Compose
	Slide 109: Cont.
	Slide 110: Cont.
	Slide 111: Cont.
	Slide 112: Cont.
	Slide 113: Docker in CI/CD
	Slide 114: Cont.
	Slide 115: Cont.
	Slide 116: Cont.
	Slide 117: Docker Orchestration
	Slide 118: Cont.
	Slide 119: Cont.
	Slide 120: Cont.
	Slide 121: Cont.
	Slide 122: Cont.
	Slide 123: Cont.
	Slide 124: Cont.
	Slide 125: Cont.
	Slide 126: Troubleshooting
	Slide 127: Cont.
	Slide 128: Security & Best practices
	Slide 129: Cont.

