
metallb-pool.yaml

kubectl apply -f
https://raw.githubusercontent.com/metallb/metallb/v0.13.12/config/manifests/me
tallb-native.yaml

kubectl get pods -n metallb-system

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:

name: ippool
namespace: metallb-system

spec:
addresses:
- 192.168.1.200/32
- 192.168.1.240-192.168.1.250

Issuing a Virtual IP to a Service Using MetalLB on

Kubernetes

MetalLB is a load balancer implementation for bare metal Kubernetes clusters, using L2

advertisements. This tutorial will guide you through the process of setting up MetalLB in your

Kubernetes cluster and assigning a virtual IP to a service.

Step 1: Install MetalLB

MetalLB can be installed via a manifest or using Helm. We'll use the manifest method here.

1. Apply the MetalLB manifest:

Note: Ensure you're using the latest version of MetalLB.

2. Verify the Installation.

You should see the MetalLB pods running.

Step 2: Configure MetalLB

MetalLB can operate in either Layer 2 mode or BGP mode. We'll use Layer 2 mode for

simplicity.

1. Create a ConfigMap for MetalLB: Define a range of IP addresses that MetalLB will manage.

Create a file named with the following content:

Replace IP ranges with your desired IP range.

kubectl apply -f metallb-pool.yaml

kubectl apply -f L2add.yaml

apiVersion: v1
kind: Service
metadata:

name: wordpress
spec:

selector:
app: wordpress

ports:
- protocol: TCP

port: 80
targetPort: 80

type: LoadBalancer

kubectl apply -f wordpress-service.yaml

kubectl get svc wordpress

Apply the Pool:

2. Create a L2 Advertisement: When additional IP ranges are defined in the config- map, they

need to be advertised on to the network. Create a file named

content:

with the following

Apply the advertisement:

Step 3: Create a Service with a Virtual IP

Let’s expose the wordpress application: Edit the service of type LoadBalancer on

:

Save and apply it:

Check the Service:

3. MetalLB will assign an external IP from the defined range to your service.

Step 4: Access the Service

 You can now access the wordpress server using the external IP provided by MetalLB.

This IP is accessible within your network.

Troubleshoot

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:

name: l2ads
namespace: metallb-system

spec:
ipAddressPools:
- ippool

L2add.yaml

wordpress-

service.yaml

kubectl delete -f
https://raw.githubusercontent.com/metal
lb/metallb/v0.13.12/config/manifests/me
tallb-native.yaml
kubectl delete -f metallb-pool.yaml
kubectl delete -f L2add.yaml
kubectl get all -n metallb-system

apiVersion: v1
kind: Service
metadata:

name: webapp-nodeport-service
spec:

type: NodePort
selector:

app: webapp
ports:

- port: 80
targetPort: 80
protocol: TCP

kubectl apply -f [your-service-file].yaml

On a different VM than the master do the testing for ARP advertisements.

Remove !MetalLB (Only for the reference)

Remove !MetalLB (Only for the reference)

Kubernetes Ingress. (Optional)

In a Kubernetes environment, if you want to use an Ingress resource to direct traffic to a

service that's exposed via NodePort, while still allowing users to access the service using a

standard port (like port 80) without specifying the NodePort, you can set it up as follows:

Step 1: Expose Your Service Using NodePort

1. Create a Service of Type NodePort for Your Web Application: Suppose you have a deployment

named webapp. You'll need to create a service for it. Here's an example YAML for the service:

This service will expose your webapp on a NodePort.

 Apply the Service:

arp -a
ping 192.168.1.200
sudo apt install iputils-arping
arping 192.168.1.200

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: webapp-ingress
annotations:

nginx.ingress.kubernetes.io/rewrite-target: /
spec:

ingressClassName: nginx
rules:
- http:

paths:
- path: /webapp

pathType: Prefix
backend:

service:
name: webapp-nodeport-service
port:

number: 80

kubectl apply -f webapp-ingress.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v1.8.2/deploy/static/provider/cloud/deploy.yaml

Step 2: Set Up Ingress to Route to the NodePort Service

1. Define an Ingress Resource: Create an Ingress resource that routes traffic to your NodePort?

service. Here's an example YAML for the Ingress:

This Ingress resource routes traffic from nginx-ingress controller external IP to the webapp-

nodeport-service on port 80.

 Apply the Ingress Resource:

Step 3: Ensure Ingress Controller is Set Up Correctly

Ensuring that your Ingress Controller is properly set up and accessible from outside the

Kubernetes cluster involves several key steps. This setup is crucial for allowing external traffic

to reach your services through the Ingress rules you've defined. Here's a breakdown of what

this entails:

1. Deploying the Ingress Controller

 Choose an Ingress Controller: There are several Ingress Controllers available, such as

NGINX, Traefik, HAProxy, etc. NGINIX is a popular choice due to its stability and feature

set.

 Install the Ingress Controller: You need to deploy the Ingress Controller in your

Kubernetes cluster. For NGINX, you might use a command like:

2. Exposing the Ingress Controller

kubectl get svc --all-namespaces

Check IP issued from the load balancer

Step 4: DNS Configuration

1. Configure DNS: Map the DNS record to the external IP address of one of your cluster nodes (if

using NodePort for the Ingress Controller) or to the external IP provided by the LoadBalancer (if

using LoadBalancer for the Ingress Controller).

Read More:

https://spacelift.io/blog/kubernetes-ingress

https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-

nginx-example.html

https://spacelift.io/blog/kubernetes-ingress
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html

