
Container Orchestration with Kubernetes



Outline

▪ Introduction to Container Orchestration

▪ Orchestration Technologies Simplified

▪ Introduction to Kubernetes

▪ Concept of a Kubernetes cluster

▪ Exploring Kubernetes Architecture



Container Ecosystem

▪ Container

▪ Container Images

▪ Container Runtime

▪ Container Registries



Container Clusters
▪ What happens when we have lots of containers running on many 

virtual machines?

▪ How can we make it easy to deploy, scale, restart, and manage all 

these containers?



Container Orchestration



Cont.
▪ An orchestrator is a system that deploys and manages applications. For 

example, Kubernetes can:

▪ Deploy your application

▪ Scale it up and down dynamically based on demand

▪ Self-heal it when things break

▪ Perform zero-downtime rolling updates and rollbacks

▪ The best part? Once set up, Kubernetes operates autonomously, requiring 

minimal supervision.



Cont.
▪ What problems do container orchestration solutions solve in this 

scenario?

▪ Management

▪ Abstraction of hardware

▪ Networking

▪ Scheduling

▪ Scaling

▪ Deployment

▪ Service Discovery



Orchestration
Technologies

▪ Docker Swarm

▪ Docker's container orchestration 

tool

▪ Easy setup and quick start

▪ Limited advanced autoscaling 

capabilities

▪ Mesos by Apache

▪ Apache Mesos for container 

orchestration

▪ Complex setup, steep learning 

curve

▪ Supports many advanced features



Kubernetes (K8s)
▪ Brief Kubernetes History –

Kubernetes, also known as k8s, is an open-source system for automating 
deployment, scaling, and management of containerized applications.

Name Kubernetes – Greek, meaning helmsman or pilot.

K8s- the eight letters between the "K" and the "s".

Google open-sourced the Kubernetes project in 2014.

15 years of Google’s experience.



Cont.
▪ Grew in popularity, open-source velocity increased

▪ Now the most popular container cluster (most cloud platforms have 

managed K8s offering)

▪ Features added regularly and frequently

▪ Cloud Native / CNCF - Kubernetes, Prometheus, Fluentd



Cont.



Cont.

▪ Computers have hardware components like CPU, memory, storage, 

and networking.

▪ Modern operating systems hide these complexities from developers.

▪ Kubernetes does the same for cloud and datacentre resources.



Cont.

▪ It handles resource allocation, eliminating manual 

configuration.

▪ No need to name servers or manage infrastructure assets.

▪ Developers tell Kubernetes to deploy and manage apps in a 

cloud-native way.



Cont.
▪ Kubernetes principles of operation –

▪ At the highest level, Kubernetes is two things:

▪ A cluster to run applications on

▪ An orchestrator of cloud-native microservices apps



Kubernetes as a cluster



Cont.

▪ Kubernetes is like any other cluster –

▪ A bunch of machines to host applications. We call these machines

“nodes”, and they can be physical servers, virtual machines, cloud

instances, Raspberry Pis, and more.



Cont.

▪ Kubernetes cluster consists of a control plane and nodes.

▪ Control plane handles API, scheduling, and cluster state storage.

▪ Nodes execute user applications.

▪ Control plane: The "brains" of the cluster, responsible for smart 

features.

▪ Nodes: The "muscle," handling everyday application execution tasks.



Cont.



Kubernetes as an orchestrator

▪ Microservices are like 

individual players on 

a football team.

▪ Kubernetes plays the 

role of the coach, 

organizing and 

managing the team.

▪ It ensures a 

coordinated and 

smooth performance, 

reacting to events.

▪ In sports, this is called 

coaching; in apps, it's 

orchestration.

▪ Kubernetes 

orchestrates cloud-

native microservices, 

just like a coach does 

in football.



Cont.
▪ Let’s look at how it works?

▪ Running applications on Kubernetes involves a simple process:

▪ Design your applications in your preferred language.

▪ Package each application as a container.

▪ Place containers in Kubernetes Pods.

▪ Deploy Pods to the cluster using controllers like Deployments, 

Daemon Sets, etc.



Cont.
▪ Kubernetes employs controllers for features like self-healing, scaling, and 

rollouts. Some controllers are for stateless apps, others for stateful apps.

▪ Kubernetes prefers declarative management: define desired states in 

YAML files.

▪ Kubernetes watches and maintains application alignment with the 

declared state.

▪ If discrepancies arise, Kubernetes attempts to rectify them.



Kubernetes Architecture

▪ Client-Server architecture

▪ Server: Control Plane

▪ Clients: Nodes



Cont.

▪ Control Plane

▪ API server

▪ Scheduler

▪ Controllers

▪ Kubernetes

▪ Cloud

▪ Etcd



Cont.
▪ A Kubernetes cluster consists of control plane nodes and worker 

nodes.

▪ Control plane nodes, sometimes called Masters or Heads, manage the 

cluster's intelligence.

▪ Production environments require multiple high-availability control 

plane nodes (typically 3 or 5).

▪ Best practice: Do not run user applications on control plane nodes.



Cont.
▪ The control plane comprises essential components, including:

▪ API Server: The central communication hub, accessible via RESTful API.

▪ Cluster Store: Stores cluster configuration and state, based on etcd.

▪ Controller Manager: Implements background controllers for cluster 

monitoring.

▪ Scheduler: Assigns work tasks to healthy worker nodes based on complex 

logic.

▪ Cloud Controller Manager: Integrates cloud services in supported public 

cloud platforms.



Cont.
▪ Nodes

▪ Kubelet

▪ Kube-proxy

▪ cAdvisor

▪ Container runtime



Cont.
▪ Worker nodes are responsible for:

▪ Watching the API server for work assignments.

▪ Executing work assignments.

▪ Reporting back to the control plane via the API server.



Cont.
▪ Key components of a worker node:

▪ Kubelet: The primary Kubernetes agent responsible for task execution and 

reporting.

▪ Container Runtime: Used for container-related tasks (e.g., image handling).

▪ Kube-proxy: Manages local cluster networking, IP assignment, and routing.

▪ Kubernetes is moving away from Docker as a container runtime, favouring 

containerd.

▪ Containerd is a lightweight, community-supported runtime compatible with 

the Container Runtime Interface (CRI).

▪ Kube-proxy handles routing and load-balancing on the Pod network.



Cont.
▪ How do I interact with a Kubernetes cluster?

▪ Hit REST API directly

▪ Can use curl, client libraries, etc.

▪ Kubectl

▪ Command-line tool to interact with control plane

▪ Abstracts away multiple REST API calls
▪ Provides “get” “create” “delete” “describe”, etc. functionality
▪ Filtering results

▪ Set up kubectl

▪ cp k8s_config_file ~/.kube/config
▪ May need to create this directory, depending on your OS
▪ kubectl cluster-info



Some Kubectl Commands..
▪ kubectl get

▪ kubectl apply

▪ kubectl rollout status

▪ kubectl rollout undo

▪ kubectl create

▪ kubectl delete

▪ kubectl expose

▪ kubectl edit

▪ kubectl patch



Packaging applications for Kubernetes!



Cont.
▪ Packaging apps for Kubernetes

▪ An application needs to tick a

to run on a 

cluster. These

few boxes

Kubernetes

include.

▪ Packaged as a container

▪ Wrapped in a Pod

▪ Deployed via a declarative 

manifest file



Pods

▪ In the Kubernetes world, the 

atomic unit of scheduling is 

the Pod.

▪ Every container in Kubernetes 

must run inside a Pod.

▪ Pods are constructs for running 

one or more containers.



Cont.



Cont.
▪ While a single-container Pod is common, multi-container Pods are 

used for specialized scenarios.

▪ Multi-container Pods can have tightly coupled containers sharing 

resources.



Cont.
▪ All containers within the same Pod share the same network stack, 

volumes, IPC namespace, and IP address.

▪ Pods are mortal and can die; replacements have different IDs and IP 

addresses.

▪ Pod immutability means you replace a Pod with a new one to apply 

changes.



Pod

Pod Manifest (cat k8s/flask-pod.yaml)



Cont.



Pod Deployment



Pod
s
▪ Pods and shared networking –



Cont.

– Kubernetes▪ Sidecar 

where

container

pod

you run a

(the
primary

main

application) alongside one or

more additional containers

(sidecar containers) within the

same Pod.



Lifecycle of Pod



Deployment

▪ Higher-level controllers like 

Deployments, DaemonSets, and 

StatefulSets are commonly used to 

deploy Pods.

▪ Deployments, for instance, enhance
Pods with features like self-healing,

scaling, rollouts, and rollbacks.

▪ These controllers operate as watch 
loops, ensuring the cluster's observed 
state aligns with the desired state.



Namespaces
▪ An abstraction that allows you to divide a cluster into multiple scoped “virtual 

clusters”

▪ E.g., Each team gets its own Namespace with associated resource quota

▪ Primary mechanism for scoping and limiting access

▪ Kubernetes usually starts with 3 Namespaces by default

▪ Default

▪ kube-system

▪ kube-public



Creating a Namespace

▪ List namespaces with kubectl:

▪ kubectl get namespaces

▪ kubectl get ns

▪ Create your own:

▪ kubectl create ns flask

▪ Specify a namespace with kubectl:

▪ kubectl -n flask get all



Services
▪ Imagine that you have been 

asked to deploy web app

▪ How does this frontend web app 

expose to outside world?

▪ How do front end app connected 

to backend database?

▪ How do we resolve Pod IP 

changes, when they die?



Cont.

▪ Services provide reliable networking for Pods.

▪ They have stable DNS names, IP addresses, and ports.

▪ Automatically update themselves as Pods come and go.

▪ Act as TCP and UDP load balancers, ensuring consistent access to 

Pods.

▪ For application-layer routing, Ingress is used.



Types of Service



Cont.
▪ ClusterIP

▪ Expose the service on a Cluster-internal IP

▪ NodePort

▪ Expose the service on each Node’s IP at a static port (“NodePort”)

▪ LoadBalancer

▪ Create an external LoadBalancer which routes requests to Nodeport & 

ClusterIP services

▪ Aside: Ingress Controllers



NodePort Service



LoadBalancer Service



Kubernetes Services and Deployments

▪ K8s Deployments –

▪ Kubernetes offers several controllers that augment Pods with 

important capabilities. The Deployment controller is specifically 

designed for stateless apps.

▪ Augment Pods with self-healing, scalability, rolling updates, and 

rollbacks.

▪ Behind-the-scenes, Deployments use ReplicaSets to do most of the 

work with Pods.



Cont.



Cont.
▪ Deployments in Kubernetes manage declarative updates for Pods and 

ReplicaSets.

▪ They define a desired state, and the Deployment Controller ensures the actual 

state matches it.

▪ Deployments can create new ReplicaSets or replace existing ones while 

managing resources.

▪ Creating a Deployment involves defining its desired state in a YAML manifest 

and applying it to the cluster.



Cont.
▪ Typical use cases for Deployments include:

▪ Rolling out a ReplicaSet and monitoring the rollout's success.

▪ Updating the PodTemplateSpec to create a new ReplicaSet and manage Pod 

transitions.

▪ Rolling back to a previous Deployment revision if needed.

▪ Scaling up to handle more load.

▪ Pausing rollouts for multiple fixes and resuming for a new rollout.

▪ Using Deployment status as an indicator of a stuck rollout.

▪ Cleaning up unnecessary older ReplicaSets.



Kubernetes Services



Cont.



Cont.



Cont.



Ingress



The Kubernetes API and Custom Resources
• API is Like a Control Panel: Think of the Kubernetes API like a control 

panel for managing your cluster.

• Access Point: It's the way you talk to your Kubernetes cluster, both 

from inside and outside.

• Actions Through HTTP Verbs: You use HTTP verbs (like GET, POST, 

PUT, PATCH, DELETE) to perform actions on your cluster via the API.



Cont.

• Resources: Everything in Kubernetes, like Pods, Services, and 

ConfigMaps, is represented as a "resource" accessible through the

API.

• Namespaces and Paths: Resources are organized into

namespaces, and you access them using paths like /api/v1 or

/apis/apps/v1.



Cont.



Cont.

▪ What Are They? Custom resources are like adding new buttons to

your control panel.

▪ Extend Kubernetes: They allow you to extend Kubernetes to

work with your own unique applications and services.

▪ Examples: You can create custom resources like

"Database" or "GameServer" that Kubernetes didn't

originally know about.



Cont.
▪ CustomResourceDefinitions (CRDs): You define what your custom 

resources look like using CRDs.

▪ Kubernetes Understands: Once you define a custom resource, 

Kubernetes understands how to create, update, and delete instances 

of it, just like its built-in resources.

▪ Easy Management: It simplifies the management of your custom 

applications because Kubernetes knows how to handle them once 

you've defined the rules.



StatefulSet
▪ Workload Management:

▪ StatefulSet is a Kubernetes workload API object designed for managing stateful 

applications.

▪ Pod Deployment and Scaling:

▪ It oversees the deployment and scaling of a group of Pods.

▪ Provides guarantees regarding the ordering and uniqueness of these Pods.

▪ Container Specification:

▪ Like Deployments, StatefulSets manage Pods based on an identical container 

specification (container image, resource requirements, etc.).



Cont.
▪ Sticky Identity:

▪ StatefulSets maintain a "sticky" identity for each of their Pods.

▪ While Pods within a StatefulSet are created from the same specification, they are 

not interchangeable.

▪ Each Pod has a persistent identifier that remains the same even when rescheduled.

▪ Storage and Persistence:

▪ StatefulSets are well-suited for workloads requiring storage volumes and data 

persistence.

▪ Although individual Pods may fail, the persistent Pod identifiers simplify matching 

volumes to new Pods that replace failed ones.



DaemonSet

▪ DaemonSet Functionality:

▪ A DaemonSet ensures that all or a subset of nodes in a Kubernetes cluster run a copy 

of a specific Pod.

▪ It dynamically manages Pods, adding them to new nodes as they join the cluster and 

removing them when nodes are removed.

▪ Garbage Collection:

▪ When a node is removed or a DaemonSet is deleted, it triggers the garbage 

collection of the Pods it created, ensuring resources are properly cleaned up.



Cont.

▪ Typical Use Cases:

▪ DaemonSets are commonly used for running system-level daemons or agents on every node 

in the cluster.

▪ Examples include cluster storage daemons, log collection daemons, and node monitoring 

daemons.

▪ Simple vs. Complex Configurations:

▪ In simpler cases, one DaemonSet is used to cover all nodes for a specific type of daemon.

▪ More complex setups may involve multiple DaemonSets for the same type of daemon, each 

with different configurations (flags, resource requests) tailored to different hardware 

types.



Jobs

▪ Task Automation: Jobs automate tasks in Kubernetes.

▪ Retry Until Success: They keep retrying tasks until a certain number of 

successful completions are achieved.

▪ Clean-Up: Deleting a Job cleans up the Pods it created.

▪ Reliability: Jobs ensure tasks run reliably, even if Pods fail.

▪ Parallel Execution: You can use Jobs to run multiple tasks in parallel.

▪ Scheduled Jobs: For scheduled tasks, use CronJobs.



Manging Resources



Cont.

▪ Kubernetes manages various resources like CPU, memory, and more.

▪ Containers are based on Linux namespaces for isolation.

▪ Control groups (Cgroups) limit resource consumption.

▪ Kubernetes schedules pods based on resource requests.

▪ Resource limits prevent container overloads.

▪ Kubernetes uses QoS classes for pod priorities.



Kubernetes Storage



Cont.
▪ The architecture involves storage 

providers on the left, which can be 
traditional enterprise storage or 
cloud storage services.

▪ The plugin layer in the middle acts 
as a connector between external 
storage and Kubernetes. Modern 
plugins use the Container Storage 
Interface (CSI).

▪ On the right is the Kubernetes 
persistent volume subsystem, 
consisting of API objects like 
PersistentVolumes (PV), 
PersistentVolumeClaims (PVC), and 
StorageClasses (SC).



Etcd
▪ etcd: A distributed, consistent 

key-value store.

▪ Use in Kubernetes: Stores cluster 
configuration and metadata.

▪ Example: Storing a service
endpoint: /myapp/config/service-
endpoint - 192.168.0.100:8080.

▪ API: Offers an API for reading, 
writing, and watching data.



Cont.

▪ High Availability: Can run in a cluster for fault tolerance.

▪ Data Types: Supports both ephemeral and persistent data.

▪ Kubernetes Recovery: Vital for recovering cluster state after failures.

▪ Security: Provides authentication and authorization for data access.



Service Discovery and Networking
▪ Service Discovery: Kubernetes provides a built-in mechanism for service discovery,

allowing applications to locate and communicate with each other within the cluster.

▪ DNS-Based Service Names: Kubernetes assigns DNS names to services automatically.
For example, if you have a service named "web-service" in the "myapp" namespace,
it can be reached at "web-service.myapp.svc.cluster.local."



Cont.
▪ Pod-to-Pod Communication: Pods can communicate with each other 

using these DNS names, regardless of the nodes they are running on. 

This simplifies the configuration as pods can rely on service names 

rather than explicit IP addresses.

▪ Load Balancing: Services automatically distribute incoming traffic 

across the pods backing the service. This load balancing ensures high 

availability and fault tolerance.



Cont.
▪ Example: Imagine you have multiple pods running a web application. 

Instead of keeping track of each pod's IP address, you can simply use 

the service name (e.g., "web-service") to access the application. 

Kubernetes will handle routing the requests to the appropriate pods.



Kubernetes Security Practices:

▪ Authentication: Kubernetes supports various authentication methods, 

including client certificates, bearer tokens, and more. This ensures 

that only authenticated entities can access the cluster.

▪ Authorization: Kubernetes has Role-Based Access Control (RBAC) to 

define who can perform actions on resources. You can grant or 

restrict access at a fine-grained level.



Cont.

▪ RBAC (Role-Based Access Control): RBAC allows you to define

roles and role bindings, specifying what actions are permitted on

which resources for different users or groups.

▪ Pod Security Policies: These policies define security constraints

that pods must adhere to. For instance, you can restrict pods from

running as the root user or accessing host namespaces.



Cont.
▪ Network Policies: Kubernetes Network Policies allow you to control

the traffic between pods by defining rules for ingress and egress

traffic. This enhances network security within the cluster.



Helm :a K8S “Package Manager”

▪ Tool for managing Kubernetes applications

▪ Think “apt-get” for Ubuntu / package managers

▪ Architecture

▪ Helm (client)

▪ Tiller (server, runs in the cluster)

▪ How it works

▪ Charts

▪ helm install stable/wordpress

▪ Sample apps: Wordpress, Prometheus, MySQL, Drupal, ...



Cont.

▪ Helm Charts: Helm packages Kubernetes resources into a

convenient format called "Charts." These Charts include

configurations, templates, and dependencies needed to deploy

complex applications.

▪ Simplify Deployment: Helm simplifies the deployment of

applications by providing a consistent and repeatable way to

define, install, and upgrade applications on Kubernetes.



Cont.
▪ Example: Suppose you want to deploy a WordPress application.

Instead of manually creating pods, services, and config files, you can

use a pre-made Helm Chart for WordPress. This Chart contains all the

necessary Kubernetes resources and configurations. You can install it

with a single Helm command, making the deployment process more

efficient and less error-prone.


	Slide 1: Container Orchestration with Kubernetes
	Slide 2: Outline
	Slide 3: Container Ecosystem
	Slide 4: Container Clusters
	Slide 5: Container Orchestration
	Slide 6: Cont.
	Slide 7: Cont.
	Slide 8: Orchestration Technologies
	Slide 9: Kubernetes (K8s)
	Slide 10: Cont.
	Slide 11: Cont.
	Slide 12: Cont.
	Slide 13: Cont.
	Slide 14: Cont.
	Slide 15: Kubernetes as a cluster
	Slide 16: Cont.
	Slide 17: Cont.
	Slide 18: Cont.
	Slide 19: Kubernetes as an orchestrator
	Slide 20: Cont.
	Slide 21: Cont.
	Slide 22: Kubernetes Architecture
	Slide 23: Cont.
	Slide 24: Cont.
	Slide 25: Cont.
	Slide 26: Cont.
	Slide 27: Cont.
	Slide 28: Cont.
	Slide 29: Cont.
	Slide 30: Some Kubectl Commands..
	Slide 31
	Slide 32: Cont.
	Slide 33: Pods
	Slide 34: Cont.
	Slide 35: Cont.
	Slide 36: Cont.
	Slide 37
	Slide 38: Cont.
	Slide 39: Pod Deployment
	Slide 40: Pods
	Slide 41: Cont.
	Slide 42: Lifecycle of Pod
	Slide 43: Deployment
	Slide 44: Namespaces
	Slide 45: Creating a Namespace
	Slide 46: Services
	Slide 47: Cont.
	Slide 48: Types of Service
	Slide 49: Cont.
	Slide 50: NodePort Service
	Slide 51: LoadBalancer Service
	Slide 52: Kubernetes Services and Deployments
	Slide 53: Cont.
	Slide 54: Cont.
	Slide 55: Cont.
	Slide 56: Kubernetes Services
	Slide 57: Cont.
	Slide 58: Cont.
	Slide 59: Cont.
	Slide 60: Ingress
	Slide 61: The Kubernetes API and Custom Resources
	Slide 62: Cont.
	Slide 63: Cont.
	Slide 64: Cont.
	Slide 65: Cont.
	Slide 66: StatefulSet
	Slide 67: Cont.
	Slide 68: DaemonSet
	Slide 69: Cont.
	Slide 70: Jobs
	Slide 71: Manging Resources
	Slide 72: Cont.
	Slide 73: Kubernetes Storage
	Slide 74: Cont.
	Slide 75: Etcd
	Slide 76: Cont.
	Slide 77: Service Discovery and Networking
	Slide 78: Cont.
	Slide 79: Cont.
	Slide 80: Kubernetes Security Practices:
	Slide 81: Cont.
	Slide 82: Cont.
	Slide 83: Helm :a K8S “Package Manager”
	Slide 84: Cont.
	Slide 85: Cont.

